110

- EXPANDED SITE INVESTIGATION

DEAD CREEK PROJECT SITES

AT CAHOKIA/SAUGET, ILLINOIS

FINAL REPORT

VOLUME 2 OF 2

May 1988

Prepared for:

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY
Division of Land Pollution Control
2200 Churchill Road
P.O. Box 19276
Springfield, Illinois 62794-9276

TABLE OF CONTENTS VOLUME 2

Appendix	Page
A CURRENT SITUATION REPORT	A-1
B BORING LOGS AND MONITORING WELL DATA	B-1
C AIR SAMPLING FLOW VOLUME CALCULATIONS AND	
CALIBRATION DATA	C-1
D SAMPLE RESULTS	D-1
E SUMMARY TABLES FOR SITE-SPECIFIC CONTAMINANT	
LOADING TO THE MISSISSIPPI RIVER	E-1
F TOXICOLOGICAL PROFILES	F-1

APPENDIX A

DESCRIPTION OF CURRENT SITUATION AT THE DEAD CREEK PROJECT SITES

TABLE OF CONTENTS

Section	Page
I. INTRODUCTION	1
II. GENERAL DESCRIPTION OF PROJECT AREA	_
Location	_
Areal Description and Topography	
Climate	6
Geology	6
Hydrology	13
Surface Drainage	13
Groundwater	14
	•
III. SITE SPECIFIC DESCRIPTIONS	
Site G	
Site H	· -
Site I and Creek Sector A	IA-1
Site J	J-1
Site K	K-1
Site L	L-1
Site M	M-1
Site N	N-1
Site 0	0-1
Site P	P-1
Site Q	Q-1
Site R	R-1
Creek Sector B	8-1
Creek Sectors C-F	C-1

LIST OF FIGURES

Figure		Page
1	Dead Creek Project Site Location Map	2
2	Site Reporting Designations for the Dead Creek Project	3
3	Boundaries of Engineering Plates for the Dead Creek Sites	5
4	Generalized Geologic Column for South-Central Illinois	8
5	Thickness of the Unconsolidated Valley Fill in the	
	Dead Creek Study Area	9
6	Cross Section of the Valley Fill in the Vicnity of	
	the Dead Creek Sites	10
G-1	Dead Creek Site Area G With Sample Locations	G-3
H-1	Dead Creek Site Area H with Magnetic Anomalies	H-3
IA-1	Dead Creek Site Area I and Creek Sector A	
	with Sampling Locations	IA-5
J-1	Dead Creek Site Area J	J-2
K-1	Dead Creek Site Area K	K-2
L-1	Dead Creek Site Area L with Sampling Locations	L-2
M-1	Dead Creek Site Area M with Sampling Locations	M-2
N-1	Dead Creek Site Area N with Sampling Locations in	
	Creek Sector C	N-2
0-1	Former Sludge Lagoons and Contaminated Soil Areas	
	at Site 0	0-3
P-1	Dead Creek Site Area P	P-2
Q-1	Dead Creek Site Area Q with Sampling Locations	Q-2
Q-2	USEPA - FIT Subsurface Soil Sampling Locations at	
	Site Q	Q-10
R-1	State and USEPA Sampling Locations at Site R	R-4
8-1	IEPA Sampling Locations at Creek Sector B and Site M	B-3
8-2	Locations of IEPA Monitoring Wells and Residential	
	Wells Sampled in the Vicinity of Dead Creek	B-12
C-1	IEPA Sampling Locations Creek Sectors C through F	C-2

LIST OF FIGURES (continued)

Figure	
Plate 1	Topographic Map of Site P
Plate 2	Topographic Map of Site O
Plate 3	Topographic Map of Site R and Northern Portion of Site Q
Plate 4	Topographic Map of the Southern Portion of Site Q
Plate 5	Topographic Map of Site J
Plate 6	Topographic Map of Sites K and H
Plate 7	Topographic Map of Site S
Plate 8	Topographic Map of Sites I, H, G, Creek Sector A, and Northern Portion of Creek Sector B
Plate 9	Topographic Map of Sites G, L, M, N, Southern Portion of H, Creek Sector B, and Northern Portion of Creek Sector ${\tt C}$
Plate 10	Topographic Map of Dead Creek, Includes Creek Sector D, Southern Portion of C, and Northern Portion of E
Plate 11	Topographic Map of Dead Creek, Including Southern Portion of Creek Sector E, and Northern Portion of Creek Sector F

NOTE: Plates 1 through 11 are attached herein under separate cover.

LIST OF TABLES

Table	Page
G-1	Analysis of Subsurface Soil Samples from Site G (Collected by IEPA in 1980 G-4
G-2	Analysis of Waste Samples from Oily Pit at Site G (Collected by IEPA 10-1-84)
IA-1	Analysis of Water Samples from Creek Sector A (Collected by IEPA)
IA-2	Analysis of Sediment Samples from Creek Sector A (Collected by IEPA)
M-1	Analysis of Surface Water and Sediment Samples from Site M (Collected by IEPA 9-15-80)
0-1	Identified Organic Compounds in Samples from Trench Excavation at Site O (Collected July 20, 1984 by Russell and Axon, Inc.) 0-5
0-2	Analytical Results for Soil Samples at Site O (Split Samples Collected February 19, 1983 by IEPA and EEI)
0-3	Analytical Results for Soil Samples at Site O (Split Samples Collected March 12, 1983 by IEPA and EEI)
Q-1	Analysis of Surface and Ground Water Samples Collected by IEPA At Site Q
Q-2	Analysis of Leachate Samples from Site Q (Collected October 28, 1981 and September 29, 1983 by IEPA)
Q-3	Analysis of Flyash Used as Cover from Stockpiles at Site Q (Samples by IEPA in 1972) Q-8
Q-4	Identified Organic Compounds in Subsurface Soil Samples from Site Q (Samples Collected July 13 Through July 20, 1983 by Ecology and Environment, Inc.)
R-1	A Listing of Waste Types and Approximate Quantities Deposited at Site R as Reported by Monsanto
R-2	Analysis of Ground Water Samples from Site R (Collected August 22, 1968 by the Illinois Department of Public Health) R-5
R-3	Analysis of Ground Water Samples from Site R (Collected December 5, 1972 by IEPA)

Table		<u>Page</u>
R -4	Analysis of Surface Water Samples From Waste Ponds at Site R (Collected January 19, 1973 by IEPA)	R-7
R-5	Analysis of Ground Water Samples From Site R (Collected February 22, 1973 by IEPA)	R - 9
R-6	Analysis of Ground Water Samples from Site R (Collected May 6, 1974 by IEPA)	R-10
R-7	Analysis of Ground Water Samples from Site R (Collected October 28, 1975 by IEPA)	R-11
R-8	Analysis of Ground Water Samples from Site R (Collected February 17, 1976 by IEPA)	R-12
R-9	Analysis of Ground Water Samples from Site R (Collected by IEPA on October 12, 1979)	R-14
R-10	Organic Analysis of Ground Water Samples from Site R (Collected by IEPA on March 25, 1981)	R-16
R-11	Analysis of Leachate and Sediment Samples from Site R (Collected October 2, 1981 by IEPA)	R-17
R-12	Compilation of Leachate and Sediment Samples Collected at Site R in November, 1981	R-18
R-13	Analysis of Tetra Through Octachlorinated Dibenzo-P-Dioxins and Dibenzofurans in Leachate Samples from Site R (Collected November 12, 1981 by Ecology and Environment, Inc.)	R-20
R-14	Inorganic Analysis of Leachate Samples from Site R (Collected November 12, 1981 by Ecology and Environment, Inc.)	R-21
R-15	Inorganic Analysis of Sediment Samples from Site R (Collected November 12, 1981 by Ecology and Environment, Inc.)	R-22
R-16	Identified Organic Compounds in Leachate and Sediment Samples from Site R (Collected November 12, 1981 by Ecology and Environment, Inc.)	R-23
R-17	Comparative Analysis of Chemicals Detected in Samples at Site R and Those Reported to have been Disposed of or Manufactured by Monsanto	R-26
B-1	Analysis of Soil Samples in the Northern Portion of Creek Sector B (Collected by IEPA 9/8/80 through 10/25/80)	8-4

Table		<u>Page</u>
8-2	Analysis of Subsurface Soil Samples at Boring Location P-1 in Creek Sector B (Collected by IEPA 9-8-80)	B - 6
B-3	Analysis of Soil Samples in the Southern Portion of Creek Sector B (Collectd by IEPA 9/8/80 through 10/25/80)	B-7
B-4	Organic Analysis of Sediment Samples from Dead Creek, Sector B (Split Samples-IEPA and Monsanto Collected 10/2/80)	B-9
8-5	Inorganic Analysis of Sediment Samples from Dead Creek, Sector B (Split Samples - IEPA and Monsanto Collected 10/2/80)	B-10
B-6	Analysis of Ground Water Samples from the IEPA Monitoring Wells (Collected 10/23/80)	B-13
B - 7	Analysis of Ground Water Samples from the IEPA Monitoring Wells (Collected 1/28/81)	8-14
8-8	Analysis of Ground Water Samples from the IEPA Monitoring Wells (Collected 3/11/81)	B-15
B -9	Analysis of Residential Well and Seepage Samples Collected By IEPA	B - 17
8-10	Analysis of Identified Organics in Ground Water and Soil Samples in the Vicinity of Creek Sector B (Collected by USEPA 3/3/82)	B-18
B -11	Inorganic Analysis of Ground Water and Soil Samples in the Vicinity of Creek Sector B (Collected by USEPA 3/3/82)	B-19
C-1	Analysis of Surface Water and Sediment Samples from Creek Sectors C through F (Collected by IEPA 9/25/80)	C-3

I. INTRODUCTION

The RI portion of the Dead Creek Project Remedial Investigation/Feasibility Study, as described in the Project Work Plan, includes eleven tasks to be completed. Task 5, Description of Current Situation, calls for Ecology and Environment, Inc. to prepare a description of the background information pertinent to the area and its problems and outline the purpose and need for remedial investigation in the area.

This report was prepared to provide the information on and a description of the current situation of the sites in the Dead Creek Project area. The report is organized to provide an area wide description followed by a detailed site by site description. The site by site description provides a detailed presentation of all available information concerning each site, which was acquired and evaluated during Tasks 3 and 4 of the RI.

II. GENERAL DESCRIPTION OF PROJECT AREA

Location

The Dead Creek Project area is located in and around the cities of Sauget (formerly Monsanto) and Cahokia in St. Clair County, Illinois (Figure 1). Under the scope of the RFP issued by the IEPA, the study area consists of 18 suspected uncontrolled hazardous waste sites located throughout the study area (Figure 2). The project area consists of 12 individual sites and 6 additional sectors in Dead Creek.

Areal Description and Topography

The sites to be investigated as part of the Dead Creek Project are in an area which contains a mixture of industrial, residential, commercial, farm, and undeveloped land. The sites consist of closed and active landfills, industrial property, undeveloped or currently unutilized land, residential land, and an areal drainage flowpath (Dead Creek).

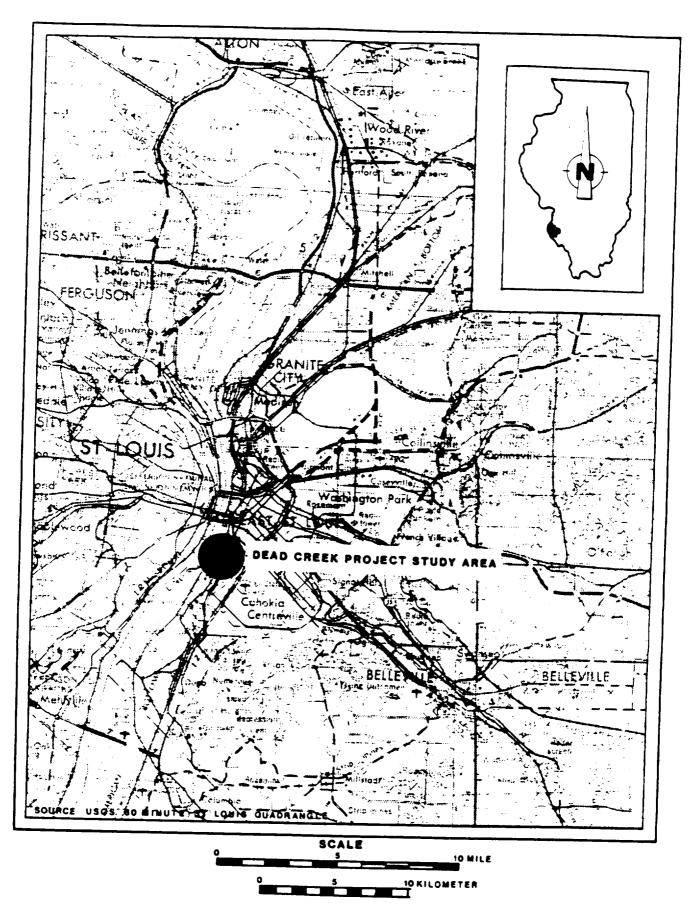


FIGURE 1
DEAD CREEK PROJECT SITE LOCATION MAP

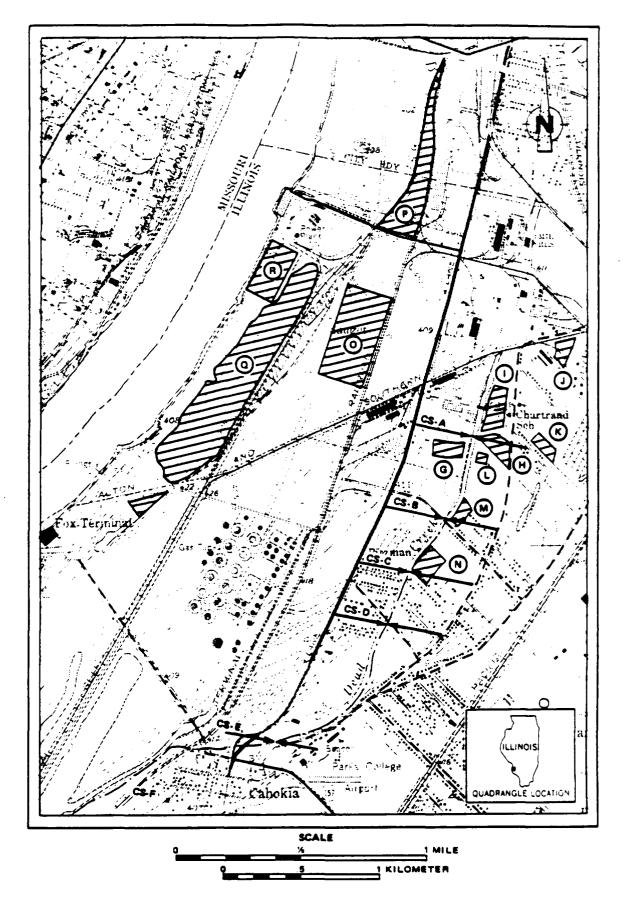


FIGURE 2 SITE REPORTING DESIGNATIONS FOR THE DEAD CREEK PROJECT

The project area is situated within the floodplain of the Mississippi River in an area known locally as the American Bottoms. Topography in the site area is controlled by structural features of the bedrock which resulted from glacial and fluvial occurrences. The Mississippi River meandered over the American Bottoms floodplain between the upland bluffs, which form the floodplain boundaries, prior to the establishment of the present channel. The meadering of the river has given rise to typical floodplain characteristics throughout the study These features include low, broad, flat, swampy areas; terraces (generally found north of the study are); curved ridges and swales (typified as meander scars) formed as slack water bars or channels; alluvial fans; wetlands vegetation (although all vegetation is generally sparse due to industrialization and urbanization); mounds; and crescent shaped ox-bow lakes. The shifting of the Mississippi River channel has resulted in heterogeneous interbedding. of fine and coarser material in the surficial flood plain deposits. Material has also been transported to the flood plain from the uplands and from the bluffs by overland flow which has resulted from rainstorms.

As in the case of most flood plains, the American Bottoms area is not perfectly flat. Many slight, naturally occurring and manmade, irregularities exist. However, in general the land surface at the site area is 400 feet above mean sea level. The land generally slopes from north to south and from the east toward the river. The wide floodplain area (approximately 6.5 miles across in the site area) exhibits little topographic relief except in the adjacent bluffs and upland areas which tend to be high (up to 150 feet above floodplain levels), steep, and moderately well drained. The local average land scope in the site area is 0.06% to the west. Regional floodplain slope is 0.0059% to 0.009% to the south (Fenneman, 1909; Jacobs, 1971).

Topographic maps for the study area were developed as part of Task 3 of the Remedial Investigation. The topographic maps are included as an attachment to this report, and an Index Map, Figure 3, depicts the

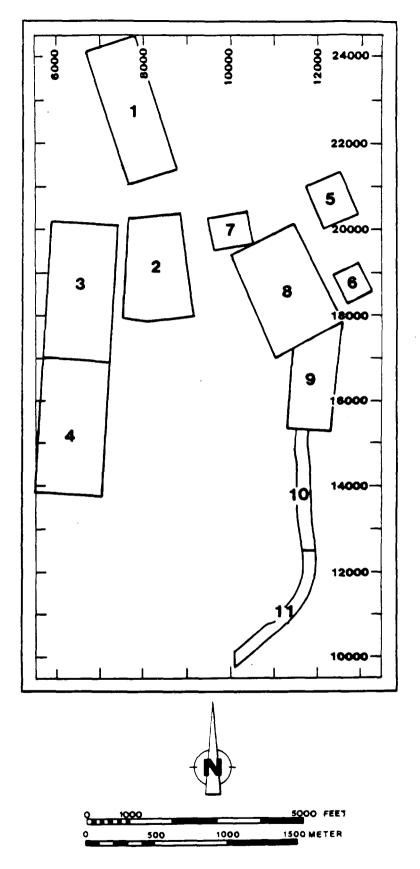


FIGURE 3
BOUNDARIES OF ENGINEERING PLATES FOR THE DEAD CREEK SITES

areal relationships of the topographic maps.

Climate

The climate in the site area is generally described as continental with hot, humid summers and mild winters punctuated by extremely cold periods of short duration. The site area is located in a major frontal convergence zone where warm, moist air from the Gulf of Mexico meets cold, dry air from Canada. This convergence zone produces a variety of rapid changes in weather conditions.

The 80-year average precipitation reported by Keefe (1983) was 35.4 inches per year, although the yearly average over the last 25 years (same data base) was up slightly to 39.5 inches per year. June is normally the wettest month, with an average of 4.3 inches of rain. Much of the summer rainfall is produced by thunderstorms, which are also responsible for the unusually heavy rains which periodically cause isolated flooding. Rainstorms which produce 1 to 2 inches of precipitation are common. Relative humidity typically ranges between 50 and 60 percent during the summer. Snow can occur in any and all months from November through April. Annual snowfall averages 17 inches.

The regional average annual temperature is 56° F. (Fahrenheit) with a January mean of 32° F. and a July mean of 79° F.. Periodic polar air fronts move through the area during the winter producing lows of -10 to-15 degrees Fahrenheit. July and August are typically hot and humid, producing temperatures above 90° F. on an average of 22 days/year. Highs in excess of 100° F. generally occur for short periods of 3 to 5 days.

Geology

The geologic formations present in the site study area consist of unconsolidated alluvium and glacial outwash, which are underlain by Mississippian and other bedrock layers. These bedrock layers are

underlain by basement granitic crystalline rock. The geologic formation sequence for South-Central Illinois is represented in Figure 4. The study area, the American Bottoms, and the Mississippi River channels are all located in a broad deep cut bedrock valley. The bedrock valley is delineated by bluff lines on both sides. Based upon available data, the bedrock valley has steep walls along the bluff lines while the valley bottom slopes gently toward the middle.

Within the bedrock valley, the Mississippi River has provided the primary mechanisms controlling the recent formation of geology and Bergstrom, et al (1956) suggests that the bedrock hydrogeology. valley is pre-glacial in nature; however, Willman et al (1970) concludes that insufficient data exists to suggest a pre-glacial valley structure for the Mississippi River. Nevertheless, glaciation did significantly modify and redesign the Mississippi River and its valley through both glacial and interglacial periods. These changes occurred as glacial wasting caused massive amounts of meltwater to be directed generally southward through and around bedrock and ice contacts, ultimately discharging into the Gulf of Mexico. geologic history, a wide and deep valley (2 to 8 miles across and up to 170 feet deep) has been carved into the predominantly soft sedimentary bedrock underlying the river (Bergstrom, 1956). Changes in stream flow, direction, and sediment load have caused this valley to fill with secondary alluvial sediments. These constantly changing parameters have resulted in the river continuously picking up and depositing (and cutting and filling) its sediment base, thereby directing and redirecting the river and its channels throughout time.

The unconsolidated valley fill, present in the bedrock valley, ranges in thickness from approximately 70 to 120 feet in the study area. The thickness of the valley fill in the region of the study area is depicted in Figure 5. A cross section of the valley fill in the vicinity of the study area is presented in Figure 6.

The valley fill deposits are typically comprised of two main formations which may reach as deep as 120 feet in the site area. The Cahokia, the uppermost formation, is comprised of predominantly silt,

ERA	SYSTEM	GROUF	COLUMN	
ENOZOIC	QUATERNARY			
	PENNSYL-	MCLEANS- SORO		
	VANIAN	KEWAHEE		
	7.4			
		MCCORMICK		
	ļ			
		1		
		OKAW		
	1 4			
		PAINT CREEK		
			November 1997	
	MAISSISSI		2 2 3 2 2	
	*	MERAMEC		
	1			•
	1			
	1	08466		
		HORTH HILL		
o				
PALE0201C	DEVONIAN			
2		HEW ALBANY		
1				
_		1		
		1.		
	<u> </u>			
	BILURIAN	BAINBRIDGE	7777	
		 		
	1	MAQUOKETA		SILT, CLAY, SILTY SAND (Cahokia For
	1			
	1		3333	SAND AND GRAVEL (Henry Form.)
_	4	GALENA	1444	1
	3			LIMESTONE
) > 0 0 E O	PLATTEVILLE	777	
	5	ļ		TOWNSHIPS OF THE PARTY OF THE P
		ANCELL		SANDSTONE
			<u> </u>	
		PRARIE DU CHEIS	7777	SHALE
		- Cheid		
			77777	CHERT
	CAMBRIAN	!	1777	1
		1	747	DOLOMITE, DOLOMITIC LIMESTONE
	CAMBRIAN		数数线线	SENTE GRANITIC, CRYSTALLINE ROCK

FIGURE 4
GENERALIZED GEOLOGIC COLUMN FOR SOUTH-CENTRAL ILLINOIS

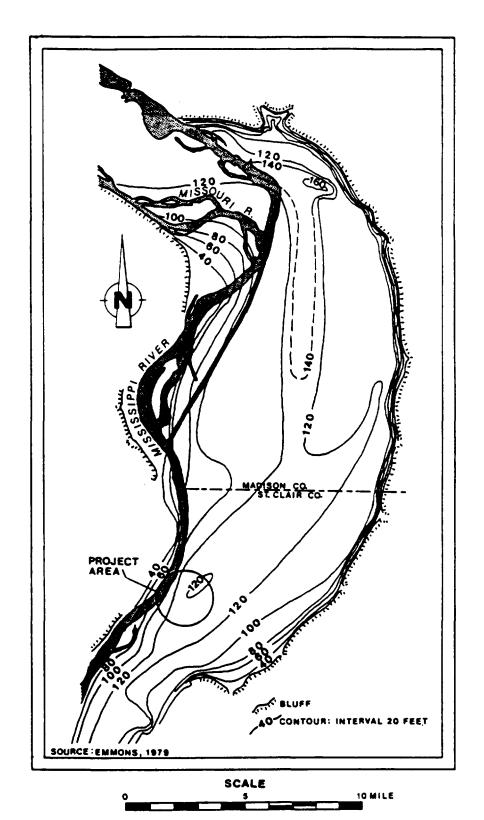
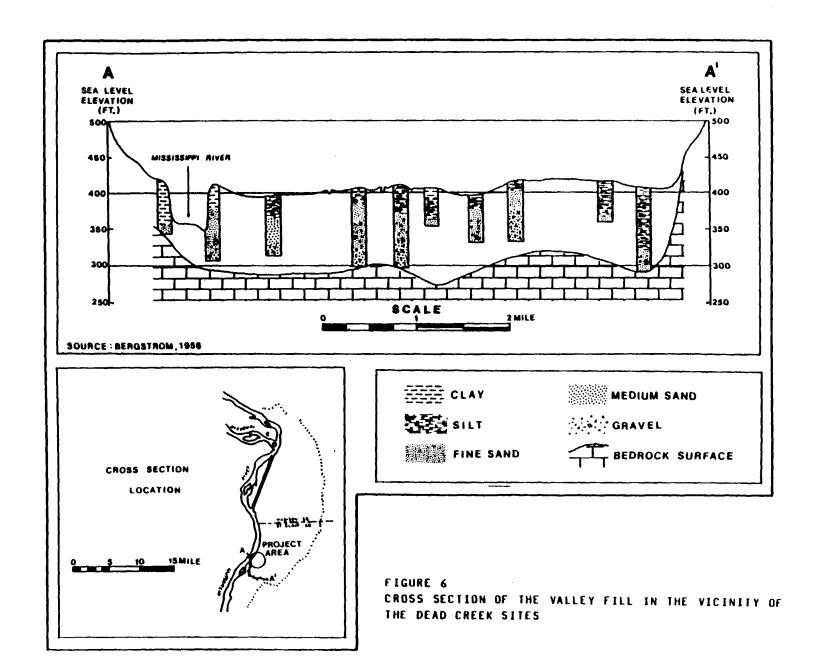



FIGURE 5
THICKNESS OF THE UNCONSOLIDATED VALLEY FILL IN THE
DEAD CREEK STUDY AREA

clay, and fine sand deposits generally indicative of an aggrading environment. These deposits were laid down as flood events of the Mississippi River, eolian activity, bank slumping, erosion, and/or slugs of material deposited directly by tributary streams. This formation has been frequently reworked by the Mississippi River and typically consists of coarser material intertongued with finer grained deposits. As such, these deposits can be variable in thickness (ranging from 15 to 30 feet). Larger expressions of tributary deposits may form thicker alluvial fans where high energy streams dissipated and dropped their sediment load.

The second major formation of the floodplain setting is the Mackinaw Member of the Henry Formation. This formation underlies the Cahokia Alluvium, and is comprised of sand and gravel from glacial outwash. Within the study area, this material rests directly on the bedrock surface and can be highly variable in thickness (70 to 100 feet) due to the fluvial processes which formed it. This formation typically contains portions which are complexly interbedded due to meandering of the river throughout history.

A third minor formation noted locally within the floodplain, but not discovered within the site investigation area, is the Peyton Colluvium. This material is comprised of fine grained silt (loess) and clay (till) which has slumped from upland areas and accumulated at the base of steep bluffs.

Immediately adjacent to the floodplain (and 3.5 to 5 miles east-south east of the sites) is an upland area marked by a steep (50 to 150 feet above surrounding terrain) bluff. Structurally, these upland areas are based unconformably on bedrock (which has not been eroded as deeply as the adjacent valley), and consists of 10 to 100 feet of uncolsolidated sediments of predominantly glacial origin. No upland formations exist in the study area; however, erosion and slumping of the upland has provided the parent material for the Cahokia Formation and Peyton Colluvium, which are found in the floodplain.

The entire study area is underlain by relatively soft sedimentary Typically, these rocks consist of shale, limestone, rock layers. sandstone, and dolomite, which were formed through geologic time by lithification of sediment and sediment-like materials. In general, parent materials were disintegrated into sand, silt, clay, and mud. which were then deposited sequentially by sedimentary processes, such as precipitation and erosion. These sequential deposits (formations) were ultimately lithified by compression, compaction, reclystallization, and cementation. General depositional environments included shallow and deep seas, rivers, and swamps. These environments provided varying thicknesses of similar materials. Missing sequences apparently represent unconformities caused by terrestrial or near terrestrial erosional processes. These sedimentary rock sequences represent millions of years of geologic time.

The earliest sedimentary rock overlying the granite basement rock is Cambrian age sandstone limestone, dolomite, and shale. The Ordovician system overlies the Cambrian. Its formations consist of sandstone, dolomite, limestone and shale. Overlying the Ordovician is the Silurian System consisting of numerous limestone layers. Next youngest is the Devonian System, with limestone, sandstone, and shale formations. At the top of the sequence is the Mississippian System containing numerous limestone, shale, siltstone, dolomite, and sandstone layers. In the adjacent highlands and at one bedrock high located within the valley south of the site area, the Pennsylvanian System may be found to contain various sandstones, siltstones, and shale formations.

Bedrock structure in the area appears to be controlled by a significant fold (the Waterloo anticline) and fluvial erosion (primarily by the Mississippi River). The fold is centered approximately 6 miles south of the site area, and the structure trends north-northwest. This fold has bent the overlying rock in the area, producing a gentle northeast-east dip of up to 3 percent on the bedrock strata. This allows the deep strata to be exposed by bedrock

valley erosional processes to the southwest of the study area, while maintaining these same formations at a deeper elevation to the northeast of the study area.

<u>Hydrology</u>

The description of the hydrology of the study area is divided into the surface drainage and groundwater discussions presented below.

Surface Drainage

The Mississippi River extends far to the north and south of the site area and drains the American Bottoms and the tributary upland Although the Mississippi River floodplain is subject to periodic inundation by excess water runoff, most of the area is protected from massive regional flooding by a complex series of levees and other flood control structures. This condition partially adds to local small scale flooding problems since precipitation is trapped behind the flood control structures where drainage is typically poor. Dead Creek itself provides drainage for a portion of the American Bottoms, and ultimately discharges to the Mississippi River via the Prairie DuPont Floodway and Cahokia Chute. (1909) has suggested that Dead Creek may at one time have been a southward extension of Cahokia Creek. Excessive siltation. realignment of surface drainage, or stream piracy may have redirected Cahokia Creek to its present channel, thus cutting off Dead Creek from the original source water.

Major surface drainage in the area is also provided by Cahokia Creek (to the north) and the Old Prairie DuPont Creek (to the south). Both of these creeks channel surface water directly into the Mississippi River. Significant additional secondary drainage within the site area and floodplain is provided by an extensive system of storm drains, pumping stations, and ditches, which were constructed or modified from existing natural drainage features for this purpose.

Groundwater

Groundwater exists in both the unconsolidated valley fill and the underlying bedrock formations. The Mississippian bedrock limestone and sandstone are water-bearing formations. Where these formations are located immediately below the unconsolidated material, there is sufficient groundwater for small or medium users. However, because of the abundance of groundwater present in the valley fill sand and gravel, the bedrock aquifer is of little significance to the study area. The majority of available groundwater in the study area is present in, and taken from, the valley fill materials. The Illinois State Water Survey has identified the study area as one in which the chances of obtaining a well yielding 500 gpm or more are good. coarsest deposits, which are most favorable for water development, are commonly encountered near bedrock and generally average 30 to 40 feet in thickness. However, because of the alluvial nature of deposits in the study area, sand and gravel deposits which yield significant quantities of groundwater are commonly found in the study area nearer the ground surface.

Prior to development of the area, groundwater levels within the study area were very near the surface elevation of 400 ft MSL. As a result, ponds, swamps, and poorly drained areas were prevalent. development of the area led to the construction of levees, drainage ditches, and wells, all of which caused the lowering of the groundwater levels. In the early 1960's, the extensive industrial pumpage in the study area (over 30 million gallons per day) resulted in a lowering of the water table by as much as 50 feet. However, due in part to the decrease in industrial groundwater use, groundwater levels within the study area have sustained a significant rise since the Mississippi River floods of 1973. Groundwater withdrawal within all of St. Clair County, in 1980, only amounted to 16 million gallons per day. As a result, measurements of monitoring wells near Dead Creek identified the water table at approximately 393 feet MSL (about 15 ft. below ground surface) in January 1981. Groundwater levels near other portions of the study area are expected to be similarly

depressed below ground surface except where affected by surface structure or well pumpage. Groundwater levels are affected by flood stages of the Mississippi River, and undergo water-level fluctuations as a result of seasonal weather patterns. In areas remote from major pumping centers, water levels generally recede in late spring, summer and early fall, when discharge from the groundwater reservoir by evapotranspiration, groundwater run-off to streams, and pumping from wells is greater than recharge. Recovery of water levels generally occurs in the early winter when conditions are favorable for infiltration of rainfall to the water table. Water level recovery is especially pronounced during the spring when the groundwater reservoir receives most of its annual recharge. Water levels are generally highest in May and lowest in December. Water levels remote from major pumping centers have a seasonal fluctuation ranging from 1 to 13 feet, with an average fluctuation of about 4 feet.

Based upon the surface drainage system for the region in 1900, R.J. Schicht (Illinois State Water Survey, 1965) estimated the piezometric surface prior to heavy development in the area. Groundwater elevation was estimated to be about 420 feet near the bluffs to about 400 feet near the Mississippi River. The piezometric surface had an average slope of about 3 feet per mile and ranged from 6 feet per mile in the Alton area to the north, to one foot per mile in the Dupo area to the south. The slope of the piezometric surface was greatest near the bluffs and flatest near the Mississippi River. Groundwater movement was generally directed to the west and south toward the Mississippi River and other streams and lakes.

Groundwater movement in the shallow deposits throughout the study area generally follow the land surface topography, with lateral movement toward local discharge zones (wells and small streams), and some movement into the deeper unconsolidated aquifers. Groundwater in the deeper unconsolidated deposits generally follows the bedrock surface. Accordingly, groundwater generally flows downstream through the sand and gravel aquifers in much the same direction as the original streamflow, but at a much slower rate.

In 1962, the general pattern of groundwater flow was slow movement from all directions toward the cones of depression, which had formed due to heavy pumpage, or toward the Mississippi River and other streams. In the study area, the lowering of the water table that accompanied groundwater withdrawal in the area established hydraulic gradients from the Mississippi River towards the pumping centers. In portions of the study area, groundwater levels were below the surface of the river and appreciable quantities of water were diverted from the river into the aquifer by the process of induced infiltration. Within the study area, the slope of the piezometric surface near the cone of depression, produced by pumping at the Monsanto facilities, exceeded 30 feet per mile.

The principal hydraulic properties of the valley fill and alluvium present in the study area indicate that the materials readily transmit groundwater and have a large amount of groundwater storage capacity. In 1952, tests were conducted for the Monsanto Chemical Corporation to evaluate the hydraulic properties of the deposits. The upper 40 feet of unconsolidated materials in the area consisted of sandy clay, and the lower 80 feet of unconsolidated material in the area consisted of various layers of sand and sand and gravel. A pump test was conducted on a well located 515 feet east of the Mississippi River and drilled to a depth of 99 feet. Six observation wells were used to assess the pump test. Using the time-drawdown method of analysis, the coefficient of transmissivity was determined to be 210,000 gpd/ft. The coefficient of storage was determined to be 0.082 (ft^3/ft^3), which is in the range typical of water table conditions. The coefficient of permeability was determined to be 2800 gpd/ft^2 .

Recharge of groundwater in the study area is received from direct infiltration of precipitation and run-off, subsurface flow of infiltrated precipitation from the bluff area to the east, and induced infiltration from adjacent river beds, where pumpage has lowered the water table below the level of the river. Direct

recharge of the water table only captures a portion of the annual precipitation. A major portion of the precipitation runs-off to streams or is lost by the evapotransporation process before it reaches the aquifer. Nevertheless, precipitation is probably the most important recharge source for the study area as a whole. amount of surface recharge that reaches the saturation zone depends upon many factors, including the character of the soil and other materials above the water table, the topography, vegetal cover, land use, soil moisture, depth to the water table, the intensity and seasonal distribution of precipitation, and temperature. the low relief and limited runoff in the study area, and because the upper silt and clay fill is not so impermeable as to prevent appreciable recharge, most of the precipitation either evaporates or seeps into the soil. Because of the extensive flood-control network in the area, recharge from floodwaters provides a limited input to Based upon a modified form of the Darcy equation, R.J. Schicht (1965) calculated the average rate of surface recharge to be about 371,000 gpd/sq. mi. for the study area.

Regional groundwater flow components to the west and south provide subsurface recharge to the study area. Schicht similarly estimated that the average recharge from subsurface flow of water from the eastern bluff boundary is 329,000 gpd/mi.

The lowering of the water table as a result of groundwater withdrawals in the study area has, in the past, established a hydraulic gradient from the Mississippi River toward the pumping centers. This resulted in water percolation through the river bed and into the aquifer, producing induced infiltration recharge. Schicht estimated the 1961 induced infiltration recharge volume for the study area to be approximately 18.5 million gpd, or roughly 58%, of the 31.9 million gpd total being withdrawn. Water withdrawal data from 1980 for the study area and areas to the north indicate that total withdrawals amount to only 3.9 million gpd as compared to more than 42 million gpd in 1961. Accordingly, for the study area, the amount of current induced infiltration from the Mississippi is

believed to be small due to dramatically reduced groundwater usage. Although current, detailed data for public and industrial water supply wells in the study area is presently unavailable, 1980 Illinois State Water Survey data indicated the presence of ten wells in or generally near the study area.

The chemical character of groundwater found in the study area varies geographically and with depth. Pumping rates and surface activities may also influence local quality. Generally, shallow wells (less than 50 feet deep) are quite highly mineralized and may have a high chloride content. Groundwater in heavily pumped areas often has high sulfate and iron contents and elevated hardness values.

Groundwater quality data developed by Schicht (1965) for Township 2N. Range 10W, Section 26, which includes a major portion of the study area, provides historical chemical data for wells with depths of approximately 100 feet. In general, the water quality was consistent. Hardness values ranged from 377 to 777 ppm, chloride values ranged from 9 to 61 ppm, and sulfate values ranged from 137 to 487 ppm. Recent Illinois State Water Survey data developed by Keefe (1983) identified a general increase in chloride and sulfate concentrations for groundwater in the study area. The general increase in chlorides was associated with the use of road salts since increased concentrations correlated with major highway locations. Increases in sulfate concentrations were speculated to be caused by an upward movement of high sulfate water from the bedrock as a result of pumping activities. Decreases in chloride and sulfate contents of groundwater were identified in a section along the Mississippi River where extensive nearby pumping had resulted in induced infiltration from the river.

III. SITE SPECIFIC DESCRIPTIONS

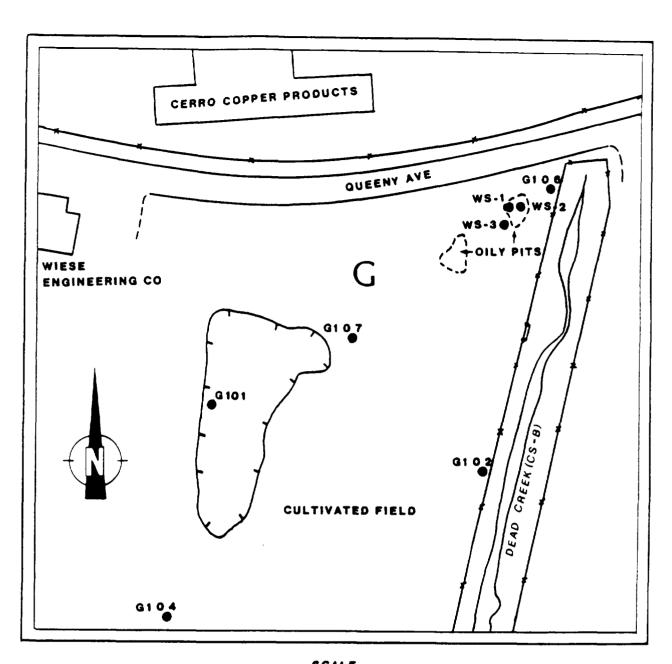
SITE G. ABANDONED LANDFILL

Site Description

Site G is a former subsurface/surface disposal area which occupies approximately 4.5 acres in Sauget, Illinois. The site is bordered on the north by Queeny Avenue; on the east by Dead Creek; on the south by a cultivated field; and on the west by Wiese Engineering Company property.

The surface of Site G is littered with demolition debris and metal wastes. Several small pits have been observed in the northeast and east-central portions of the site. Oily and tar-like wastes, along with scattered corroded drums, are found in these areas. Additionally, 20-30 deteriorated drums are scattered along a ridge running east-west, near the southern perimeter of the site. The western portion of Site G is marked by a mounded area with several corroded drums protruding at the surface. A large depression is found immediately south of the mounded area. This depression receives surface runoff from a sizable area within the site. Also, exposed debris is present over most of the site. In areas where wastes are not exposed, flyash and cinder material has been used as cover.

Site History and Previous Investigations


Examination of historical aerial photographs indicates excavation at Site G began sometime prior to 1950 and disposal operations were initiated shortly thereafter. No information is available concerning owners or operators for Site G at the time disposal was occurring. The photographs suggest disposal activities at the site continued until the early 1970s. Presently, Site G is inactive, although recent observations suggest that random dumping of various non-chemical wastes continues.

Site G was previously studied by the Illinois EPA in 1980 and 1981 as

part of an area-wide study to determine the source of contamination found in Dead Creek.

The results of this study were reported in the Preliminary Hydrogeological Investigation in the Northern Portion of Dead Creek and Vicinity in 1980-1981 (St. John Report). Locations of samples collected to date in the vicinity of Site G are shown on Figure G-1. The IEPA study completed in 1981 included collecting samples from subsurface soils and groundwater at Site G, and collecting surface water and sediment samples from Dead Creek immediately east of the site. Monitoring well G106 was installed in the northeast corner of the site, and well G107 is located approximately 50 feet south of Site G in a surface depression. In addition, wells G101 and G104 were installed southwest of the site as part of the general area investigation. Analytical data for these wells are presented in Tables B-6, B-7, and B-8, located in the Creek Sector B portion of this report. Several organic contaminants were detected at elevated levels in well G107. These include chlorophenol, chlorobenzene, dichlorophenol, dichlorobenzene, and PCBs. PCBs were also detected in samples collected from well G106. Both of these wells showed concentrations of heavy metals; specifically arsenic, barium, copper, lead, and manganese, which exceeded IEPA water quality standards. Phosphorus also exceeded the standards in both wells. Wells G101 and G104 showed little evidence of contamination although trace levels of PCBs were found in G101. Preliminary surveillance in November, 1985 at Site G showed wells G101, G104, and G107 to be intact. Well G106 was not located, and is suspected to have been destroyed.

In order to determine the vertical distribution of contaminants in the area, the IEPA collected subsurface soil samples at the locations of wells G106 and G107. Analytical data from these samples is shown in Table G-1. High levels of metals and phosphorus were detected in all samples. Trace levels of PCBs were found to a depth of 13 feet at G106. A quantified level (0.62 ppm) of PCBs was found at a depth of two feet in the location of G107, but PCBs were not detected in deeper samples. In October, 1984, IEPA collected three soil samples

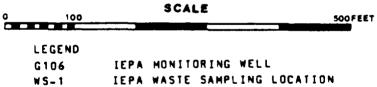


FIGURE G-1
DEAD CREEK SITE AREA G WITH SAMPLE LOCATIONS

* detected but not quantified (trace)

Blanks indicate parameter not analyzed

- below detection limits

MOIE: All results in pan

LIBON 211E & (COLTECLED BY 1EFN IN 1980)

LYBIE & C-1: WAYTA212 OF STESTINGVOE SOIL SWAFTE2

SWPLE LOCATION AND DEPTH

			-	29.0	-	-	-	-	#		#	809
			EIE	370	-	€	6₩	43	9 £	E2	183	כוועכ ביי
			189	OVET	ध्य	546	095	16 0	£8E	S/P	<i>785</i>	sunorigeorf9
			6 E	1 E	6 ī	8	12	EP	11	SI	90	Nickel
			6#	0/1	9	ε	15	6	8	Ħ	डा	pre-7
			21,900	21,200	00/°	00/ ' S	13'600	00/ °6	70°400	00E,51	009 ° ZT	noni
			23	16	Ħ	82	95	1 5	65	06	J40	.addo)
16.12-12. 25.25 15.05	15.61-181 171-19.81	10.51-12	15.0-12	15-12.0	18. IE-10E	·2.15- ·05	18:-19:5	12.6.21	15.21-13.	10:-11:2:	10.6-12.7	PARAETER
	2019							90	ल			

at Site G from a pit in the northeast corner. Analyses of these samples are presented in Table G-2. Elevated levels of heavy metals were found in all samples, as were various organic contaminants. PCBs were detected in sample WS-3, but not in the other two samples. Sample WS-1 showed the highest degree of organic contamination. Organics detected in this sample include dimethyl phenanthrene, phenyl indene, pyrene, trimethyl phenanthrene, and aliphatic hydrocarbons.

Data from additional samples taken adjacent to Site G in Dead Creek are addressed in the narrative for Creek Sector B. Site G may be a source of contamination in Dead Creek; however, since the hydrology in the area is not well-defined, this cannot presently be determined.

A geophysical investigation, including flux-gate magnetometry and electromagnetics (EM), was completed at Site G in December, 1985 as part of the Dead Creek RI/FS project. A survey grid with dimensions of 440 by 600 feet was laid out using a compass and tape measure. Because of the large amount of scrap metal scattered about the surface of Site G, instruments were calibrated in off-site areas. The magnetometer survey was subcontracted to Technos, Inc. of Miami, Florida.

The magnetometer survey at Site G showed that a major magnetic anomaly covers most of the northern portion of the site. Several smaller anomalies were found to the north of the large depression in the southwest corner of Site G. Survey lines run south of the fill area in a cultivated field showed no magnetic anomalies above background conditions. The mounds in the northwest corner of the site showed smaller anomalies at the surface and larger anomalies for deeper readings, indicating significant quantities of buried metals.

An EM survey was done using the same grid as for the magnetometer investigation. Shallow soundings indicated three areas showing relatively high intensity anomalies. These include a 50 feet by 20

TABLE G-2: ANALYSIS OF WASTE SAMPLES FROM OILY PIT AT SITE G (COLLECTED BY IEPA 10-1-84)

SAMPLE NUMBER

PARAMETER ANALYZED	WS-1	WS-2	WS-3
Arsenic	0.3	0.6	97
Cadmium	0.1	0.8	16.8
Copper	101.4	509	712
Chromium	24.4	27.2	30
Iron	106	151	6025
Lead	26.6	52.1	337
Manganese	-	-	9.9
Mercury	0.36	0.46	1.99
Zinc	101.4	339	104,100
Aliphatic Hydrocarbons	19,200	5.23	-
Chlorobenzene	-	0.58	-
Dimethyl phenanthrene	3100	-	•
Phenyl indene	320	•	•
Pyrene	610	-	-
Trimethyl Phenanthrene	1400	-	-
PCBs	-	-	18
Other Organics (not specified)	1200	0.4	4070

NOTE: All results in ppm - indicates below detection limits

feet area in the northeast corner, a 150 feet by 100 feet area in the east-central portion, and the entire mounded area along the west perimeter of the site. Deep soundings (approximately 10 to 15 meters in depth) indicated a significant anomaly covers most of the northern portion of the site. Three negative anomalies were recorded in the center of the fill area, possibly indicating higher, off-scale instrument readings or the presence of significant quantities non-conductive material such as concrete. The EM survey also showed anomalies trending off-site in the northwest corner, indicating the possibility that the actual filled area extends north under Queeny Avenue.

Data Assessment and Recommendations

Activities proposed at Site G for the Dead Creek Project include collecting 10 subsurface and 40 surface soil samples, and water samples from IEPA wells located on or near the site. A soil gas monitoring survey is also scheduled for Site G, and will be conducted in conjunction with ambient air monitoring at the site. Additional investigation is necessary to adequately characterize the site and to provide an adequate data base for conducting the feasibility study. Existing monitoring wells in the vicinity of the site need to be refurbished prior to sampling. Additional wells need to be installed around the site to determine if Site G is contributing to groundwater pollution in the area. Additional borings and subsurface sampling (alternatively excavation of test pits and sampling) in anomalous areas encountered during the geophysical study would be needed to provide additional information concerning depth of fill, waste characteristics, and past operation. This additional information will allow more specific evaluation of remedial alternatives. hydrology of Site G in relation to Dead Creek also needs to be assessed to determine if the site is a source of pollution observed in the creek. This assessment would include collecting the following data: (1) Ground water elevations from a minimum of three locations on each side of the creek, (2) Surface water and creek bed elevations from three locations in the creek, and (3) Infiltration rates for the

alluvium and the Henry formation at Site G. The above data, in conjunction with the stratigraphic columns from borings in the creek bed (St. John Report), would provide sufficient information to determine the relationship, if any, between ground water and the surface hydrology of the creek.

It was previously noted that IEPA well G106 was not located during a preliminary survey. Further attempts should be made to locate this well and to repair it if it is feasible to do so. The condition of all IEPA wells should be assessed, and reconstruction or redevelopment should be performed in accordance with the assessment.

SITE H. ROGER'S CARTAGE PROPERTY

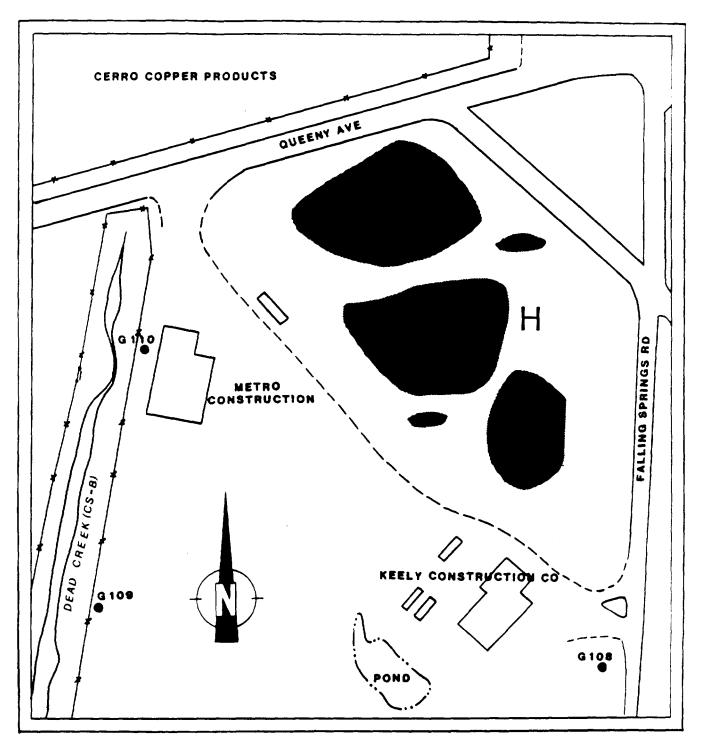
Site Description

Site H is a former disposal area covering approximately five acres in Sauget, Illinois. The site is located immediately southwest of the intersection of Queeny Avenue and Falling Springs Road. Presently, Site H is an open field which has been covered, vegetated, and graded. Several depression areas, capable of retaining rain water, are also evident. Surface drainage is generally to the west; although certain localized drainage is toward the aforementioned depressions.

Site History and Previous Investigations

A review of historical aerial photographs indicates that Site H was initially used as a disposal area sometime around 1940. Monsanto Company submitted a "Notification of Hazardous Waste Site Form" to the U.S. EPA in 1981, indicating below-ground drum disposal of organics, inorganics, and solvents. The notification listed the site name as Sauget Monsanto Illinois Landfill, and indicated that waste disposal continued until 1957. Site H is presently owned by James Tolbird of Roger's Cartage Company. Photographs suggest the site initially operated as a sand and gravel borrow pit prior to disposal activities. The southern half of Site I operated contiguously with Site H, and the properties were subsequently separated by the construction of Queeny Avenue.

Previous investigation of Site H is limited to review of historical photographs and the installation of one monitoring well downgradient from the site. This well, G110, was sampled in 1980 and 1981 as part of IEPAs hydrogeological investigation. Analytical data for well G110 is shown in Tables B-6, B-7, and B-8, presented in the Creek Sector B portion of this report. Contaminants detected in G110 include PCBs, chlorophenol, cyclohexanone, arsenic, copper, and nickel.


As part of the Dead Creek Project, a geophysical survey, including flux-gate magnetometry and EM, was conducted at Site H in December 1985. A survey grid with dimensions of 520 feet by 550 feet was laid out over the site using a compass and tape measure. Technos, Inc. was contracted to conduct the magnetometer survey.

The results of the magnetometer survey indicate three large areas with major magnetic anomalies and two smaller localized areas with lower intensity anomalies (Figure H-1). All anomalies are of sufficient magnitude to indicate buried drums or a large amount of other buried ferrous metal. The southernmost, large anomalous area correlated well with one of the surface depressions observed recently at the site, while the other two large areas partially correlated with depressions. This information, in conjunction with historical photographs, indicates that all anomalous areas are part of one large fill or disposal pit.

Further evaluation of Site H was done using EM with various coil spacings, allowing for different depths of penetration. Results from shallow soundings (O to 7.5 meter effective depth range) indicate three high intensity anomalies which correlate well with the magnetic anomalies seen in the magnetometer survey. These anomalous areas were also seen in the results from intermediate soundings (5 to 15 meters). In addition, three negative anomalies were noted near the north and central portions of the site. These negative readings indicate areas of lower conductivity, and may be attributable to relatively non-conductive contaminants (organics), or to other materials such as concrete rubble or clay. Deep soundings (12 to 30 meters) showed much lower conductivity readings over the entire site, which may indicate that disposal was generally limited to a depth of less than 15 meters.

Data Assessment and Recommendations

The absence of any detailed historical information concerning waste disposal or analytical data concerning Site H creates a major data

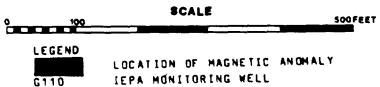


FIGURE H-1 DEAD CREEK SITE AREA H WITH MAGNETIC ANOMALIES

gap. The scope of work for this site during the Dead Creek Project includes collecting five surface and five subsurface soil samples for analysis. A soil gas survey and ambient air monitoring will also be completed at Site H. If specific contaminants are found, this data base would not be sufficient to conduct feasibility study evaluations.

Depending on the results of the initial sampling, additional sampling will be required to further define the extent of any contamination found at the site. This would include installation of monitoring wells and evaluation of ground water conditions. Further geophysical investigations to the north to Cerro Copper Products Company property would allow for more accurate definition of site boundaries and potential drum disposal areas. Additional borings and subsurface sampling or pit excavation would be necessary to accurately determine locations and types of buried wastes.

Site Description

Site I is an operating copper refining and tube manufacturing facility covering approximately 55 acres in Sauget, Illinois. The areas of interest for the Dead Creek Project at this facility include a former sand and gravel pit which was subsequently filled with unknown wastes, and a holding pond (Creek Sector A) which formerly served as head waters for Dead Creek. The Cerro Copper Products property is bordered on the north by the Alton and Southern Railroad; on the west by Illinois Route 3; on the south by Queeny Avenue; and on the east by Falling Springs Road. The areas to be investigated encompass roughly the eastern one-third of the property. Presently, the former gravel pit/fill area is covered and graded, and is used for equipment storage.

Site History and Previous Investigations

Cerro DePasco Corporation of New York purchased the existing plant and property west of Dead Creek in 1957 from the Lewin-Mathes Corporation. Cerro Copper subsequently added property east of the creek to their holdings in 1967. Examination of historical aerial photographs indicate subsurface disposal at Site I was discontinued sometime between the years 1955-1962. These photographs also show that Site I and Site H, which is located across Queeny Avenue to the south, constitute one large subsurface disposal area. Monsanto company submitted a "Notification of Hazardous Waste Site" form for this landfill (Sauget Monsanto Illinois Landfill), indicating disposal of organics, inorganics, and solvents in drums. The years of operation listed on the notification are "unknown to 1957." Historical photographs suggest activity at the site began prior to 1937.

Creek Sector A reportedly received discharges from Monsanto and other companies prior to 1970. In the early 1970's, the culvert

under Queeny Avenue was sealed off to restrict flow from these ponds to the remainder of Dead Creek. The ponds were subsequently regraded to the north for the purpose of directing drainage into a concrete vault with a bar screen located at the north end of the Cerro Copper Products property. When the water level in the ponds rises, the water discharges through the vault to an interceptor, which ultimately drains to the Sauget Wastewater Treatment Plant. According to Cerro Copper officials, the only direct discharges to the holding ponds at this time are area run-off and roof drainage. No process wastewater, cooling water, or other wastes are directly discharged. Five runoff drain pipes project from the west bank of the ponds.

The holding ponds, Creek Sector A, on the Cerro Copper Products property were identified as a major source of groundwater pollution in the area as a result of the IEPA Preliminary Hydrogeologic Investigation completed in 1981. Analyses of water and sediment samples from the holding ponds are included in Tables IA-1 and IA-2, and sample locations are shown in Figure IA-1. Contaminants detected at significant concentrations in these samples include PCBs, dichlorobenzene, aliphatic hydrocarbons, arsenic, cadmium, chromium, lead, and mercury.

The IEPA Preliminary Hydrogeologic Investigation also included installation of one monitoring well on the Cerro Copper Products property downgradient from Site I and the holding ponds. Analyses of samples collected from this well (well number G112) are included in Tables B-6, B-7, and B-8, located in the Creek Sector B portion of this report. Contaminants detected at elevated levels in this well include chlorobenzene, dichlorobenzene, chloroaniline, phenol, copper, phosphorus, and zinc. The contaminants in the ground water may be attributable to Site I or the holding ponds (Creek Sector A); however, a more detailed investigation is necessary to accurately determine the source.

A geophysical investigation was scheduled to be conducted at Site I as part of the initial investigations for the Dead Creek Project.

TABLE IA-1: ANALYSIS OF WATER SAMPLES FROM CREEK SECTOR A (COLLECTED BY IEPA)

	SAMPLE DATE AND LOCATION			
	11/26/80		1/26/81	
PARAMETERS	5503	5504	5501	5502
Alkalinity	127	110		3302
Ammonia	0.2	1.0		
Arsenic	0.058	0.025		
Barium	1.2	0.7		
B0D-5	630	158		
Boron	0.2	0.3		
Cadmium	0.36	0.19		
COD	0.00	1190		
Chloride	33	36		
Chromium (Total)	0.61	0.21		
Copper	4.5	3.6		
Cyanide	.01	.01		
Fluoride	0.4	0.7		
Hardness	227	260		
Iron	58	28		
Lead	6.6	2.8		
Magnesium	35.8	28.7		
Manganese	1.0	0.67		
Mercury	0.0016	0.0016		
Nickel	4.2	3.3		
Nitrate-Nitrite	1.4	1.7		
Ηq	6.9	7.0		
Phenols	0.02	0.035		
Phosphorus	1.9	3.4		
Potassium	4.3	6.2		
R.O.E.	361	407		
Selenium	0.002			
Silver	0.24	0.14		
Sodium	19.7	22.4		
Sulfate	90	130		
Zinc	30	17		
PCB (ppb)	22	28	2.0	-
Aliphatic hydrocarbons (ppb)	23,000			

NOTES: All results in ppm unless otherwise noted
Blanks indicate that parameter was not analyzed
- Indicates below detection limits

TABLE IA-2: ANALYSIS OF SEDIMENT SAMPLES FROM CREEK SECTOR A (COLLECTED BY IEPA)

SAMPLE DATE AND LOCATION

	SAME DATE AND ECCATION				
	11-26-80		1-	1-28-81	
PARAMETERS	×128	x129	×128	x129	
Ammonia			30	96	
Barium			1200	2500	
Cadmium			51	22	
Calcium			5300	13,100	
Chromium			140	490	
Copper	İ		5500	24,000	
Iron			29,500	51,900	
Lead			840	2600	
Magnesium	1		2300	2100	
Manganese			140	250	
Mercury			101	6.9	
Nickel			570	1500	
Potassium			670	520	
Silver			29	98	
Zinc	1		2300	5800	
Aliphatic Hydrocarbons	13	26			
Dichlorobenzene	-	1.7			
PCBs	2.2	13			

NOTES: All results in ppm

Blanks indicate parameter not analyzed for

below detection limits

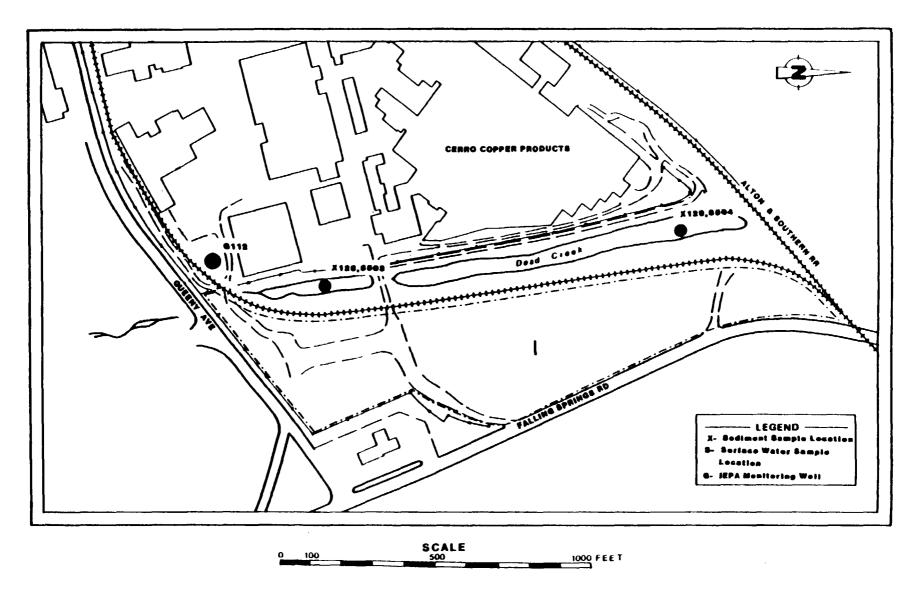


FIGURE IA-1
DEAD CREEK SITE AREA I AND CREEK SECTOR A WITH SAMPLING LOCATIONS

This investigation was cancelled on the scheduled day due to the denial of access to the site by Cerro Copper officials.

Data Assessment and Recommendations

Field activities to be completed for these sites during the project include collecting 32 surface soil and 15 subsurface soil samples at Site I, and collecting three surface water samples from Creek Sector A. A soil gas survey and ambient air monitoring are also scheduled to be conducted at Site I. In order to have an adequate data base to complete the feasibliity study for these sites, additional information is necessary. Additional field activities should include a more detailed characterization of Creek Sector A, which would be accomplished with sediment sampling and assessment of subsurface soil and ground water conditions.

For Site I, the proposed geophysical investigation should be completed prior to any additional field activities. Subsequent to the geophysical investigation, 5-6 monitoring wells should be stratigically located to ensure efficient collection of data necessary to identify the presence of and to determine the sources of any ground water contamination. Additional subsurface soil sampling would be conducted, as necessary, in conjunction with monitoring well installation. Excavation of test pits, in conjunction with sampling, is an alternative method of data collection for Site I.

SITE J. STERLING STEEL FOUNDRY

Site Description

Site J consists of two pits and a surface disposal area utilized by an active steel foundry in the Village of Sauget, Illinois. The site is bordered on the north by the Alton and Southern Railroad; on the west by Monsanto Road; on the south by Little Avenue, and on the east by a Mobil Oil Tank Farm. The surface disposal area is defined by a triangular portion of the property to the northeast of the plant buildings. Generally, surface drainage in this area is directed toward a ditch along the northern perimeter. However, several scattered depression areas are also evident. Two unlined pits and one concrete-lined surface impoundment were observed at Site J, along with an incinerator which is no longer in use (Figure J-1).

Site History and Previous Investigations

The pit located southeast of the plant building was excavated approximately 30 years ago, based on a review of historical aerial photographs. According to the site operator, it was a borrow pit for road construction fill. The pit was subsequently filled with scrap metal, demolition debris, and casting sand. No evidence has been found suggesting disposal of hazardous materials in the borrow pit. The other unlined pit, located north of the plant building, was excavated in approximately 1950 for the purpose of collecting and settling baghouse dust from furnaces in the foundry. The dust is blown into this pit through underground piping, thus reducing the chance for off-site migration of airborne particulates. The adjacent concrete impoundment has two aerators, used to cool water from the furnaces and compressors.

A small incinerator is situated immediately west of the former borrow pit at Site J (Figure J-1). It has a stack approximately 15-18 feet in height, and was used solely to burn trash and empty bentonite sacks, according to the plant operator. The incinerator was operated

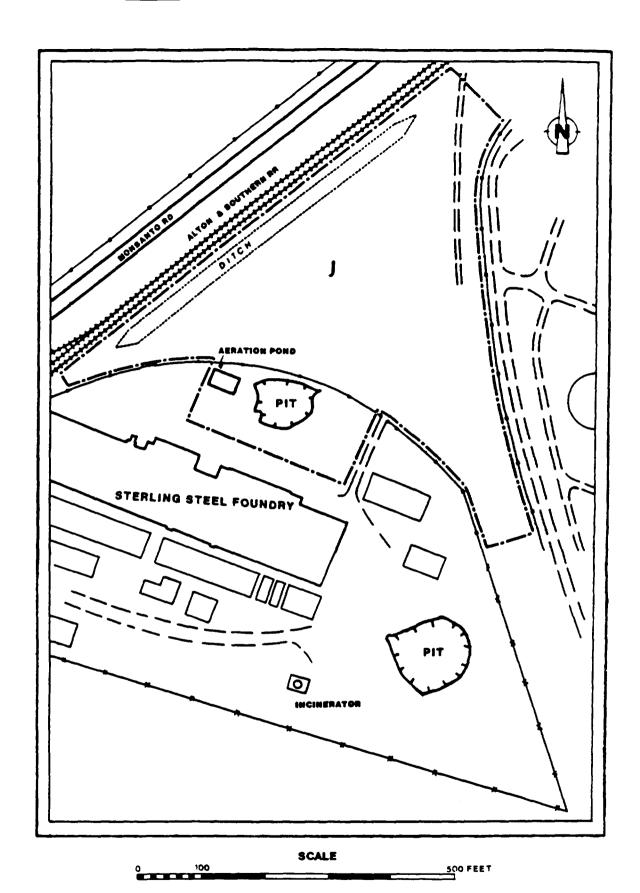


FIGURE J-1 DEAD CREEK SITE AREA J

for 10-12 years following its installation in 1970.

• т

The surface disposal area covers approximately six acres to the northeast of the plant buildings. Sometime in the mid-1970's, Sterling Steel began to use this area for disposal of spent casting sand, slag, scrap steel, and construction debris. No initial excavation was done in this area prior to disposal activities, other than installing a drainage ditch along the northern perimeter. The area is periodically graded, although several depressional areas are evident. Several corroded drums, apparently containing only casting sand and slag, were also observed during a recent visit to the site.

R. O. Shive and Claude Harrell began operations at Sterling Steel Castings Company at its present location in 1922. In 1982, St. Louis Steel Company purchased the facility, and the name was changed to Sterling Steel Foundry, Inc. Raw materials used in Sterling's casting operations included manganese, chromium, nickel, the molybdenum, silicon, bentonite, and water. Water is circulated from furnaces and compressors to the aerated holding pond, and wastewater is directed to the Sauget Treatment Plant.

Site J has not been previously investigated by IEPA. The site was identified by inspection of historical photographs, which indicate possible disposal in the sand pits.

The original scope of work for the Dead Creek Project, as stipulated in the RFP, called for geophysical investigations at Site J to determine potential areas of drum disposal. Based on background review and visual observation, it was determined that geophysical surveys could not adequately define such locations in the originally proposed surface disposal area. This is due to the high metal content of the wastes in the area (casting sand, slag, scrap steel, steel shot), which would result in the entire site appearing as one large anomaly, thereby making it impossible to differentiate drums from other wastes.

A scaled down geophysical survey, including flux-gate magnetometry and EM, was conducted in an area adjacent to the unlined pit northeast of the plant buildings (Figure J-1). The purpose of this survey was to determine if drum disposal may have occurred in this area. A 100 feet by 100 feet grid was set up in a grassy area immediately east of the pit, and survey lines were run on 20 foot intervals. The magnetometer survey results indicated no sigifnicant anomalies within the survey area. Several small anomalies did appear, but were not large enough to infer drums. On-site observations suggest that these smaller anomalies are a result of buried slag or interference from steel castings and scrap metals which are stored adjacent to the survey area.

An EM survey was conducted using the same basic grid system as above. However, several survey points were offset due to physical limitations (coil spacings for the EM are changed depending on desired penetration, thus necessitating offsets). Analysis of the EM data for both horizontal and vertical dipoles (10 meter spacing) indicates an elongate, elliptical-shaped anomaly southeast of the unlined pit. This anomaly dissipates to the north, and is likely attributable to the stockpiled castings and scrap.

Data Assessment and Recommendations

No analytical data is presently available concerning Site J. The scope of work for this project includes collecting five surface and five subsurface soil samples for waste characterization. In addition to this sampling, a soil gas survey and ambient air monitoring will be conducted at Site J. If contamination is detected, additional attempts should be made to locate information concerning past operations at the site. Additional subsurface soil sampling and installation and sampling of ground water monitoring wells should then be carried out. If contamination is detected, this added investigation would be essential in order to complete feasibility study activities.

SITE K. FORMER SAND PIT

Site Description

Site K is the location of a former sand pit for which no file information could be located. The site is located north of a residential area on Queeny Avenue, and east of Falling Springs Road in Sauget, Illinois (Figure K-1). Site K covers approximately six acres, and presently the property is unoccupied. Several trucks with the name M-T-S, Inc. (Sauget) on the doors were observed at the site during preliminary reconnaissance, but there was no activity at the property. Subsequent attempts to contact M-T-S, Inc. by telephone did not succeed. Several trailer homes and houses are located within 100 feet of the site. The pit, which constitutes Site K, has been filled and covered with soil and gravel, and the area has been graded to the surrounding topography.

Site History and Previous Investigation

Historical aerial photographs suggest possible waste disposal operations at Site K. Excavation at the site began sometime in the late 1940s. By 1955, the site was filled with unknown materials, and a vegetation cover had started to develop. No buildings were apparent at the site at the time of the initial excavation. the excavation was filled, the site remained unchanged until at least Photographs from 1973 again show an excavation, somewhat 1968. larger than the first one, in the same location at Site K. This pit contained water, as seen in photographs from 1973 and 1974, and a building had been erected at the site sometime prior to 1973. information has been located concerning operations at the site during this time period. The second excavation was filled with unknown materials by 1979, and the site has apparently remained generally unchanged since that time.

Previous investigation of Site K has been limited to a review of the historical photographs. No field investigations have been conducted at the site.

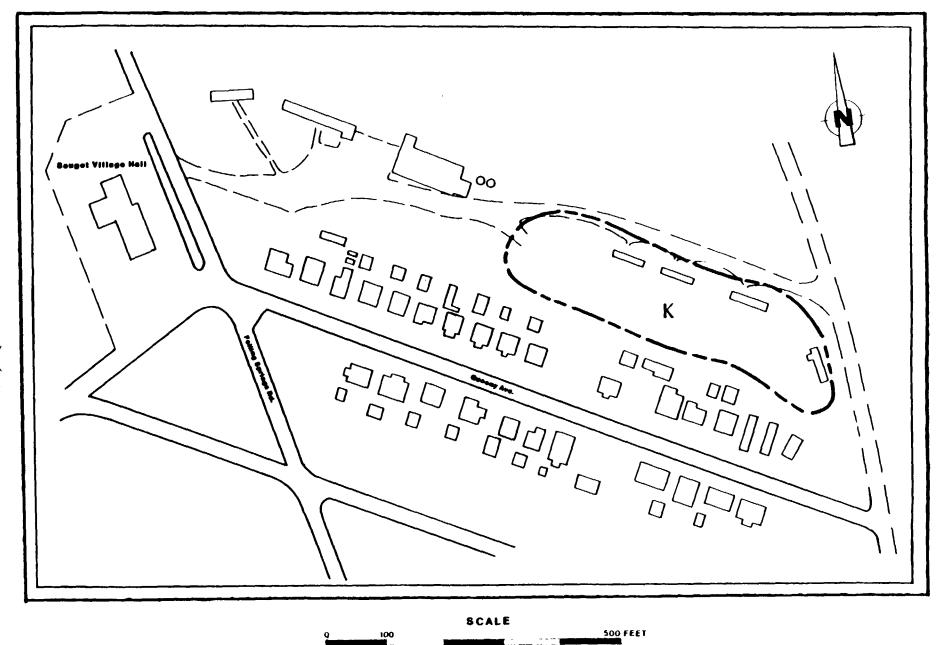
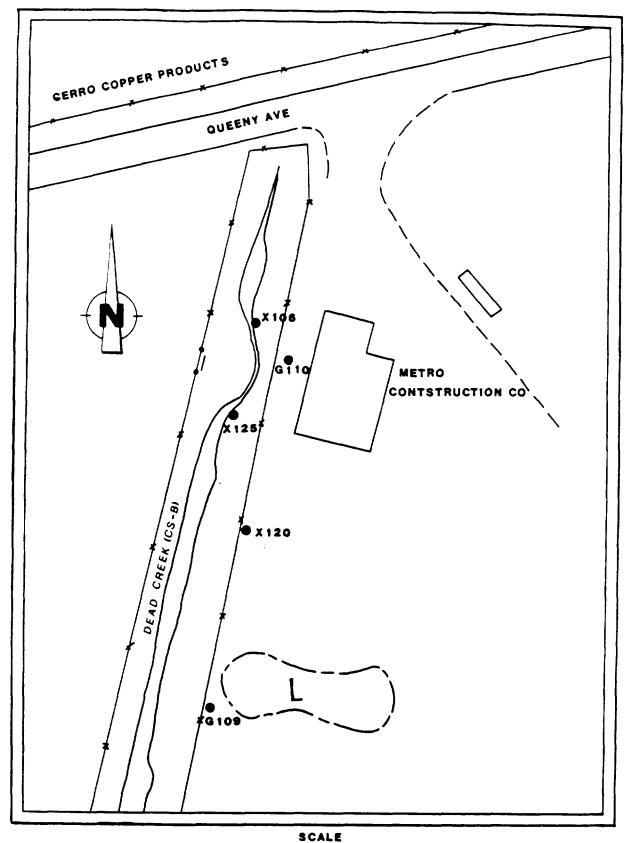


FIGURE K-1 DEAD CREEK SITE AREA K

Data Assessment and Recommendations

No sampling and/or analytical data has been developed to date for Site K. Since other sand pits/disposal operations in the area have shown significant contamination, it is entirely possible the disposal of hazardous materials did occur at this site. activities scheduled for Site K consists of collecting three subsurface soil samples and conducting soil gas and ambient air surveys. This sampling should be adequate to determine the presence of wastes and also indicate if further investigation is necessary. If contamination is detected, additional attempts should be made to locate information concerning past operations Additional subsurface soil sampling and installation and sampling of groundwater monitoring wells should then be carried out. contamination is detected, this added investigation would essential in order to complete feasibility study activities. In addition, depending upon subsurface conditions identified, geophysical investigation may be of value to delineate pit boundaries as well as determine the presence of subsurface drum disposal.


Site Description

Site L is the location of a former surface impoundment used by the Harold Waggoner Company to dispose of wash water from a truck cleaning operation. The impoundment was situated approximately 250 feet south of the present Metro Construction Company building, and approximately 125 feet east of Dead Creek (Figure L-1). The site is now covered with black cinders, and is used by Metro Construction Company for equipment storage. Several rows of heavy equipment are presently stored in the immediate area of the former impoundment. This equipment should be moved prior to any field activities.

Site History and Previous Investigations

Waggoner Company, owned and operated by Harold Waggoner, specialized in hauling industrial wastes for companies in the St. Louis/Metro East area. Harold Waggoner operated the company from 1964 to 1974, when he sold the operation to Ruan Trucking Company. Prior to 1971, Wagonner reportedly discharged wash water from truck cleaning operations directly to Dead Creek. In August 1971, the IEPA ordered Waggoner to cease discharging wastes to the creek. quently, a pit was excavated for the purpose of storing wash waters, and the pit was used by Waggoner until 1974. Based on a review of historical photographs, the dimensions of this pit were determined to be roughly 70 feet by 150 feet. Ruan Trucking reportedly continued this practice of wash water storage until 1978. The property was then leased, and later purchased, by Tony Lechner of Metro Construction Company.

The IEPA calculated a rough estimate of the quantity of wash water disposed of in the impoundment between 1971 and 1978. This estimated volume, 164,000 gallons, is based on the assumption that Ruan Trucking operated at the same volume as Waggoner. The estimate is useful as a starting point for further calculations concerning

0 100 400 FEET

LEGEND

G1 10 IEPA MONITORING WELL

X120 IEPA SOIL SAMPLING LOCATION

FIGURE L-1
DEAD CREEK SITE AREA L WITH SAMPLING LOCATIONS

Tyx 46

expected leachate migration rates and plume characteristics in the ground water aquifer. It should be noted that the impoundment was not lined, and the base consisted of medium to coarse grained sands.

Site L was identified in the IEPA St. John Report as a source of both ground water and surface water contamination in the area. The IEPA study included collecting several soil/sediment samples and one groundwater sample from areas downgradient of Site L. Results from analyses of sediment samples are presented in Table B-1, located in the Creek Sector B portion of this report. Results from the analyses of groundwater samples from the monitoring well downgradient of Site L (well G109) are included in Tables B-6, B-7, and B-8 (Creek Sector B).

Monitoring well G109, located approximately 100 feet west of the former impoundment, was found to be the most polluted well during IEPA's preliminary investigation. Also, during the installation of G109, drillers became nauseous from fumes at the well location. Initial sampling conducted by IEPA on October 23, 1980 indicated the presence of chlorophenol, phenol, and cyclohexanone, along with relatively high levels of heavy metals (Table B-6). Analyses from subsequent sampling events did not show organic contaminants, other than phenol. Arsenic, cadmium, copper, nickel, and phosphorus were detected at quantities significantly above IEPA's water quality standards. Other IEPA monitoring wells adjacent to the creek showed concentrations of these contaminants at least an order of magnitude (10 times) less than those found in G109. No other likely sources of contamination are known to exist in the immediate area. In view of these points, it is likely that contaminants found in well G109 are attributable to the former disposal impoundment (Site L).

Surface soil samples collected in the vicinity of Site L during the IEPA study include X106, X120, and X125 (Figure L-1). Samples X106 and X125 were taken from the creek bed, and X120 was taken from surface soil east of the creek in the general vicinity of the

impoundment. Analyses of these samples are presented in Table B-1, which is located in the Creek Sector B portion of this report. High levels of several organic contaminants were detected in X125. These include alkyl benzenes, dichlorobenzene, dichlorophenol, hydrocarbons, naphthalenes, and trichlorobenzene at concentrations ranging from 78 to 21,000 parts per million (ppm). PCBs, including 10,000 ppm at X125, were detected in all three samples. Sample X106 was not analyzed for inorganic parameters, and concentrations of inorganics in X120 and X125 were only slightly higher than those found in the background soil sample X121 (see Tables B-1 and B-3).

Geophysical surveys were completed at Site L as part of the Dead Creek Project in December, 1985. These surveys included the use of EM and flux-gate magnetometry over a 200 feet by 200 feet grid in the area of the former disposal impoundment. Two rows of heavy equipment and trailers were present in the middle of the site at the time of the survey.

Magnetometer readings indicated a significant magnetic anomaly in the southwest corner of the site. Another large anomaly was observed between the rows of equipment; but an accurate assessment of the size and actual magnitude of the anomaly was not possible due to surface interference. An EM survey was conducted using different coil alignments to obtain readings from various depths. Shallow soundings indicated a single anomaly with the approximate dimensions of 150 feet by 100 feet in the southeast corner of Site L. Readings in this area were significantly higher than those obtained from a random check point in the cultivated field to the south. Deeper instrument penetration showed an anomaly that was similarly located in the southeast corner; however, the size and the magnitude of the readings were smaller than observed in the shallow investigation. from the remainder of Site L showed no significant anomalies, although these readings were generally higher than those seen at the check point in the cultivated field. This is probably due to cinders covering the site, which are not present in the cultivated field.

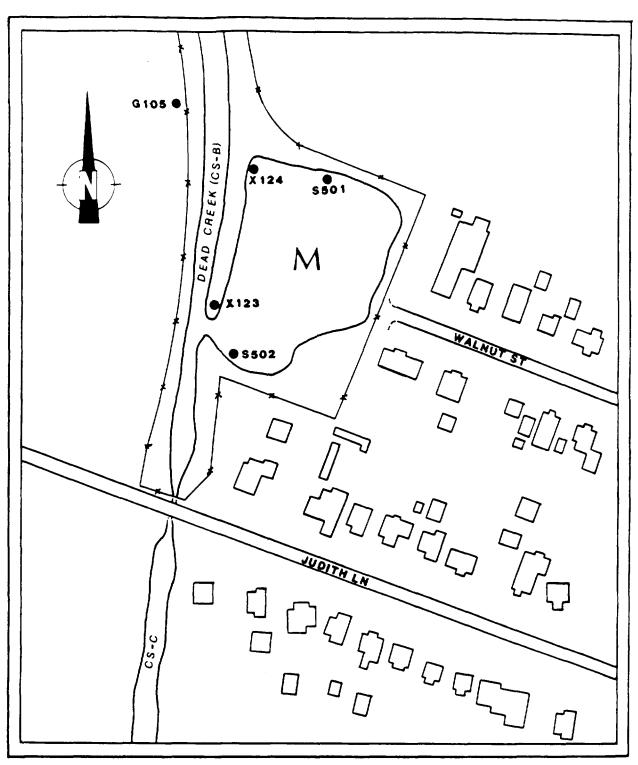
Data Assessment and Recommendations

Investigations planned for Site L during the RI include subsurface soil sampling and soil gas monitoring. Ambient air monitoring will also be conducted as for all sites in the project.

Further activities necessary to provide adequate data for the feasibility study should include installation and sampling of 3 to 4 monitoring wells, and collecting additional subsurface soil samples. Subsurface soil sampling would be done in conjunction with well installation, and would provide additional data concerning migration of contaminants. The hydrology of the area also needs to be assessed to determine the interaction, if any, between the ground water and the creek.

Preliminary geophysical investigations and subsequent acquisition of historical aerial photographs indicate the likely presence of waste residues extending to the farmland to the south of Site L. Accordingly, additional surveys should be conducted south of the area initially surveyed. Additional geophysical investigations would allow better definition of the impoundment boundaries and also aid in delineating off-site migration of contaminants.

SITE M. HALL CONSTRUCTION PIT


Site Description

Site M is a sand pit excavated by the H.H. Hall Construction Company in the mid to late 1940's. The pit is located immediately east of Dead Creek, and approximately 300 feet north of Judith Lane in Cahokia, Illinois (Figure M-1). The dimensions of the pit are approximately 275 by 350 feet. Presently, Site M is enclosed by a chain link fence, which also surrounds Creek Sector B. residential area is located just east of the pit on Walnut Street, which earlier served as an access road to Site M. The pit was excavated prior to any residential development on this street. Observations suggest that the pit is apparently isolated from Dead Creek by an embankment; however, this embankment may not be continuous. Aerial photographs indicate that a small break in the southern part of the embankment may allow flow between the creek and This possibility is supported by past IEPA inspections indicating discoloration in the pit similar to that observed in Dead Creek.

Site History and Previous Investigations

No information is available on file concerning waste disposal activities at Site M. It is possible that disposal did occur, since access to the pit remained unrestricted until a snow fence was erected in 1980. From review of historical aerial photographs, it is evident that minor changes in the dimensions of the pit have occurred. This could be an indication of filling around the perimeter of the pit. IEPA and the Cahokia Health Department have received numerous complaints about Site M and the creek from residents in the area. These complaints address, for the most part, seepage of odoriferous water into basements and problems associated with well water used to water gardens and lawns.

IEPA sampled several private wells in the area during the preliminary

JEPA SURFACE WATER SAMPLING LOCATION

FIGURE M-1
DEAD CREEK SITE AREA M WITH SAMPLING LOCATIONS

5502

hydrogeological study conducted in 1980. In addition, one sample of basement seepage from a home on Walnut Street near Site M was collected. Analytical results of these samples are presented in Table B-9, located in the Creek Sector B portion of the report. The results show concentrations of copper, manganese, and phosphorus above the state's water quality standards in one or more wells as well as in the basement seepage sample.

In conjunction with the creek sampling done in 1980, IEPA collected sediment and water samples from Site M. Analytical data for these samples are presented in Table M-1. In general, the water samples showed no significant contamination, although water quality standards for copper, phosphorous, and zinc were exceeded. Trace levels of PCBs (0.9 to 4.4 ppb) were found in both samples. The sediment samples, however, did show fairly high levels of several contaminants, including cadmium, chromium, copper, lead, nickel, zinc, and PCBs. In general, the samples closer to the break in the embankment separating Site M from Dead Creek showed higher levels of contaminants than the other samples.

Because water levels in the pit were approximately two feet higher than those found in the closest monitoring wells, the IEPA study concluded that there is no hydrological connection between water in the pit and the ground water aquifer. This assessment may or may not be accurate.

Data Assessments and Recommendations

The IEPA study conducted in 1980 showed significant contamination at Site M and identified specific waste types present. Investigation of Site M for the Dead Creek Project includes collecting two surface water and three sediment samples. A soil gas survey and ambient air monitoring will also be conducted at Site M. This sampling program will not provide sufficient data to adequately evaluate remedial alternatives. Core samples should be collected from the bottom of the pit in order to determine the types of wastes present and the

TABLE M-1: ANALYSIS OF SURFACE WATER AND SEDIMENT SAMPLES FROM SITE M (COLLECTED BY IEPA 9-15-80)

SAMPLE LOCATIONS

	SAMPLE LOCATIONS			
2424457525	Water		Sediment	
PARAMETERS	S 501	S 502	X 123	X 124
Alkalinity	80	85		
Arsenic	0.006	0.01		
Barium	0.2	0.5	4,400	350
Berylium	_		3	1
B0D-5	4	33		
Boron	0.2	0.2		25
Cadmium	-	-	40	4
Calcium			12,500	4,500
COD	58	85		
Chloride	27	28		
Chromium	-	-	150	50
Copper	0.035	0.33	18,700	4,500
Cyanide	0.02	-		
Flouride	0.4	0.4		
Iron	0.8	1.8	49,000	13,500
Lead	-	0.01	1,400	130
Magnesium	. 6	6	3,400	3,500
Manganese	0.06	0.82	200	80
Mercury	-	•		
Nickel	0.02	0.05	1,600	590
Phenol	0.01	0.01		
Phosphorus	0.17	0.31		
Potassium	5.9	6.2	950	1,000
Silver		-	30	66
Sodium	24	25	650	100
Strontium			175	27
Vanadium			42	19
Zinc	0.1	0.7	17,700	2,600
PCBs	0.0009	0.0044	1,100	24
Dichlorobenzene				· · · · · · · · · · · · · · · · · · ·

NOTE: All results in ppm.

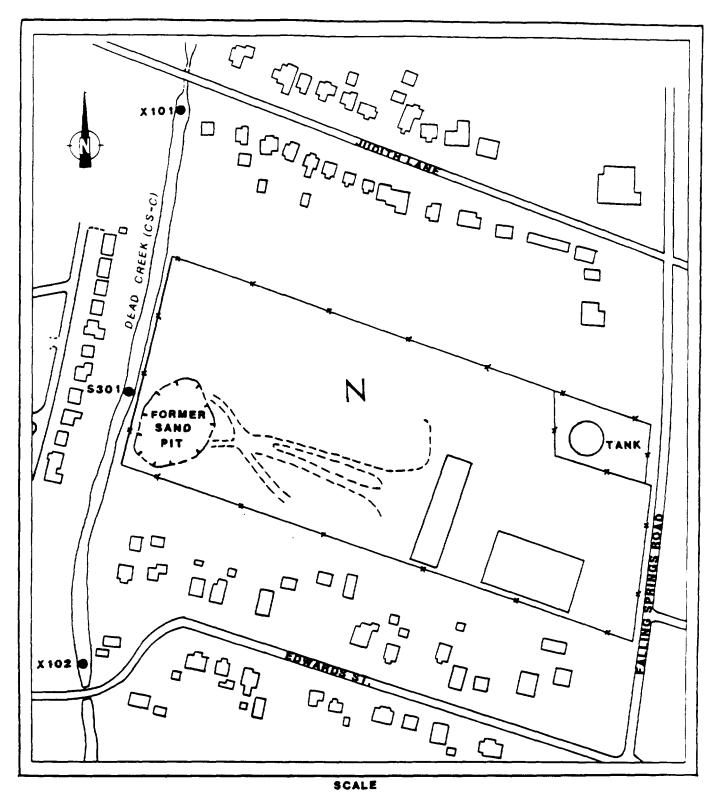
Blanks indicate parameter not analyzed.

- Indicates below detection limits.

extent of vertical migration of contaminants that has occurred. In addition, several borings should be completed around the perimeter of the pit, including the embankment between the pit and the creek. It would also be necessary to verify that there is no hydrological connection between the water in the pit and the ground water aquifer. This would be best accomplished using continuous recording gauging stations at wells in the vicinity of the creek and at the pit. These activities would provide the information necessary to proceed with a viable remedial program.

SITE N - H.H. HALL CONSTRUCTION CO.

Site Description


Site N is an operations and equipment storage facility for the H. H. Hall Construction Company of East St. Louis. The site is located in a residential/commercial neighborhood in the town of Cahokia, Illinois. Site N is bordered on the north by residential property along Judith Lane; on the west by Dead Creek; on the south by residential property along Edwards Street, and on the east by Falling Springs Road. The entire facility covers approximately 23 acres. Access to the site is restricted by a chain link fence.

Site History and Previous Investigation

Historical photographs indicate that a borrow pit existed at the facility which may have been used for waste disposal. The borrow pit, located in the southwest corner adjacent to Dead Creek, is roughly 4-5 acres in size (Figure N-1). No file information has been located concerning waste disposal at Site N. The pit has been filled and covered.

Historical photographs indicate that excavation at Site N began sometime prior to 1950. The presence of water in the pit was displayed in photographs from 1950, suggesting excavation into the Henry Formation aquifer. Hall Construction Company officials were recently contacted in an attempt to gather further information about the site. Apparently the pit was excavated in the late 1940's as a borrow pit for road construction materials. According to the officials contacted, concrete rubble and other demolition debris are the only wastes disposed of in the pit by Hall Construction. The area is presently covered with rubble and debris and is used only for equipment storage.

Although no analytical data has been developed for Site N, it should not be overlooked as a possible source of contamination in the area.

0 100 200 800 FEET

LEGEND

X 101 IEPA SED IMENT SAMPLING LOCATION

5301 IEPA SURFACE WATER SAMPLING LOCATION

FIGURE N-1

DEAD CREEK SITE AREA N WITH SAMPLING LOCATIONS IN CREEK SECTOR C

The site is located adjacent to Creek Sector C of Dead Creek, which has shown elevated levels of several contaminants, including PCBs. At this time, it cannot be determined if the contamination in Creek Sector C is the result of flow from the heavily-contaminated Creek Sector B, or the result of other unknown sources. It is also not known if access to Site N has always been restricted. Accordingly, the possibility exists that other parties may have used the pit for disposal.

Data Assessment and Recommendations

No sampling or field investigation data is presently available for Site N. Field activities scheduled at Site N during the Dead Creek Project include collecting three surface and two subsurface soil samples. In addition, a soil gas survey and ambient air monitoring will be conducted at the site. These investigations should be adequate to characterize the types of wastes present. The results of this sampling should also indicate if further investigation of the site is warranted.

If contamination is identified at the site, additional subsurface soil sampling and installation and sampling of groundwater monitoring wells should be carried out. This added investigation would be essential to complete feasibility study activities. In addition, depending upon subsurface conditions identified, a geophysical investigation may be of value to delineate pit boundaries and determine the presence of subsurface drum disposal. The hydrology of the creek in relation to the site should also be assessed to determine the potential for discharge from the pit to the creek.

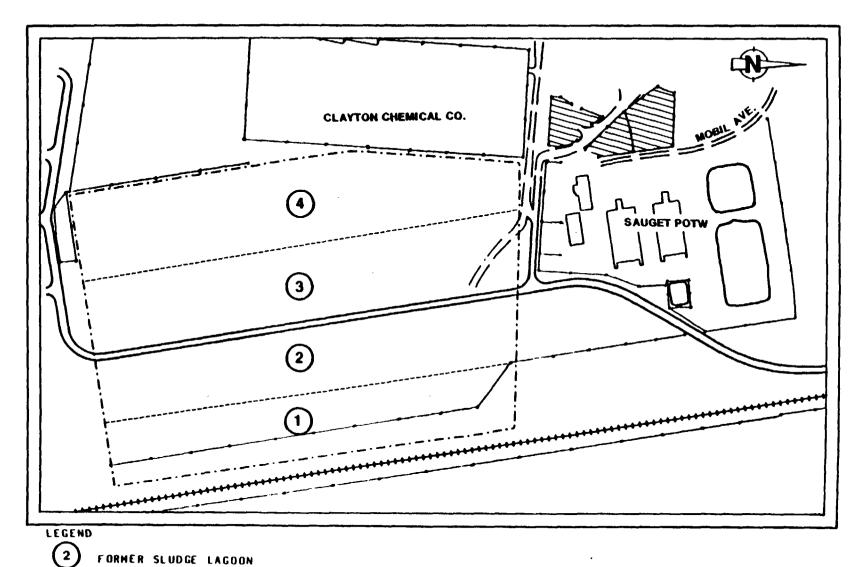
SITE O - SAUGET WASTE WATER TREATMENT PLANT

Site Description

Site 0 is the Sauget Waste Water Treatment Plant and related property, located on Mobile Avenue in Sauget, Illinois. The property covers approximately 45 acres in a heavily industrialized area. The site consists of a series of four inactive sludge dewatering lagoons and a separate area of contamination. The former sludge lagoons cover approximately 20 acres to the south of the treatment plant buildings, and the identified contaminated area (3 acres) is located immediately west of the Sauget Waste Water Treatment Plant on the northwest corner of the property.

Site History and Previous Investigations

The Sauget Treatment Plant has been in operation in some form since approximately 1952. The plant primarily treats effluent from area industries, but also provides treatment for the entire Village of Sauget. Approximately ten million gallons per day (MGD) of waste water is treated at this facility, of which over 95 percent is from industrial sources. Area industries served by the Sauget Treatment Plant include Monsanto Chemical, Cerro Copper, Sterling Steel Foundry, Amax Zinc, Rogers Cartage, Edwin Cooper, and Midwest Rubber. Effluent from the treatment plant is directed to a National Pollutant Discharge Elimination System (NPDES) permitted discharge point in the Mississippi River.


The treatment plant has a long history of NPDES permit violations, for the most part due to the chemical quality of the plant effluent. Mercury, PCBs, and organic solvents have been detected at concentrations exceeding permit limits on several occasions. A USEPA study conducted in 1982 concluded that the treatment plant waste water contributed a substantial volume of priority, toxic pollutants annually to the Mississippi River. Since operations began, the plant has undergone several modifications and upgrades, increasing both

capacity and effluent quality.

According to a Notification of Hazardous Waste Site Form submitted to USEPA in 1981, the former lagoons were used for disposal of clarifier sludges from 1965 to approximately 1978. The lagoons were designed to drain liquid from the sludge. The lagoons were not artificially lined, and were apparently excavated into the Henry Formation Sand. Initially, the sludge was not treated in any way after being placed in the lagoons. After an unknown period of time, lime was used for neutralization.

In 1982, IEPA personnel collected a sample of filter cake sludge from the treatment plant, which provides an indication of the chemical quality of sludges placed in the lagoons. Analysis of this sample showed several organic contaminants, including chlorinated benzenes, xylene, and aliphatic hydrocarbons, at concentrations ranging from 120 to 820 ppm. The lagoons are presently covered with two feet of clay and have been vegetated. Sludges from the Sauget Treatment Plant, which is still in operation, are presently taken to two IEPA-permitted landfills in the St. Louis Metro-East area.

Extensive construction/excavation has been done since 1981 in the area surrounding the Sauget Treatment Plant. The new American Bottoms Regional Treatment Plant, completed in 1985 but not on line as yet, is located immediately south of the former sludge lagoons. Several problems involving chemical wastes were encountered during excavation work for the construction of this facility. workers uncovered a black, tar-like substance with a strong solvent odor while digging a trench for sewer and water lines to the new treatment plant. Although file information is sketchy concerning the exact location of this incident, it is thought to be in the southern portion of Lagoons 3 and 4 (Figure 0-1). Two samples of the waste material were collected by Envirodyne Engineers, Inc. (EEI) of St. Louis, and a limited organic analysis was run. Both samples showed the presence of PCBs (477 to 653 ppm), phenol (0.28 to 12.0 ppm), and oil and grease (29 to 35 percent). Benzene was also detected at

APPROXIMATE LAGOON BOUNDARY
AREA OF INDENTIFIED SOIL CONTAMINATION

FIGURE 0-1
FORMER SLUDGE LAGOONS AND CONTAMINATED SOIL AREAS AT SITE O

trace levels (1 ppb) in both samples.

Several additional locations have reportedly been sampled by EEI as a result of uncovering waste materials during excavation activities around the Sauget Treatment Plant. However, attempts to gather information concerning specific sample locations and analytical data have been of limited success. Chemical data for two soil samples collected from excavated soil piles in the area of the former sludge lagoons was acquired. These results are shown in Table 0-1. samples show high levels of several chlorinated organics and other priority pollutants. Values were listed for total PCBs, however, the PCB results could not be verified by the laboratory. limited data has been acquired, available data indicates that the former sludge lagoon area likely contains widespread organic and inorganic contamination.

In 1983, IEPA identified another highly contaminated area at Site O. This area is located directly west of the existing treatment plant and approximately 200 feet north of the Clayton Chemical Company property (Figure 0-1). IEPA and EEI personnel conducted cooperative sampling effort in this area during February and March of A total of 33 surface and subsurface soil samples were collected and analyzed for PCBs and TCDD (samples collected in March were analyzed for TCDD only). Analytical results for these samples are shown in Tables 0-2 and 0-3. The results of initial sampling done in February show relatively high levels of PCBs in all samples, including those taken to a depth of 14 inches. Sample location 5, in the area of a proposed effluent-pump station, was the only location where TCDD was detected in the initial sampling. Based on the results from samples collected in February, it was determined that further sampling would be necessary. In March, 1983, 21 soil samples were collected from 10 locations in the area of the initial sampling. Depths of these samples ranged from 0 to 28 inches. Sample number 14 was a composite of several soil piles, and samples 10A and 10B were The results of these samples indicate spiked control samples. significant TCDD contamination throughout the area. Sample locations

TABLE 0-1: IDENTIFIED ORGANIC COMPOUNDS IN SAMPLES FROM TRENCH EXCAVATION AT SITE O (COLLECTED JULY 20, 1984 BY RUSSELL AND AXON, INC.)

SAMPLE LOCATIONS

PARAMETERS	SAMPLE 1	SAMPLE 2	BLANK	
2,4-Dichlorophenol	50.1			
Pentachlorophenol	3,600	159	Í	
2,4,6-Trichlorophenol	39.3			
Crysene	123	2.2		
Benzo-k-Fluoranthene	15.9	0.45		
Bis(2-Ethylhexyl) Phthalate	10.9		0.098	
1,2-Chlorobenzene		12.2	1	
1,4-Dichlorobenzene		8.01		
Di-Butyl Phthalate		5.06	0.1	
Phenanthrene	100	1.6	}	
Pyrene	102	2.1		
1,2,4-Trichlorobenzene	65.3	1.6		
PCBs	*	*		
Benzo(a)Pyrene	4.2	1.0		

NOTE: All results in ppm.

Blanks indicate compound not detected.

* Identified, but values cannot be verified.

a Analysis performed by Envirodyne Engineers, Inc. (EEI),
St. Louis, MO.

TABLE 02: ANALYTICAL RESULTS FOR SOIL SAMPLES AT SITE O (SPLIT SAMPLES COLLECTED FEBRUARY 19, 1983 BY IEPA AND EEI)

PARAMETERS

					A
SAMPLE NO. (Depth)	PCB - IEPA	PCB - EEI	TCDD - IEPAª	TCDD - EEI	Comment
1 (0" - F")	1,500	3,690			
2A (O"- F")	7,600	5,350			
2B (7" - 13")	390	716			
3A (0" - 7")	9,100	137,250			
38 (7" - 13")	40	28			
4A (0" - 6")	20,000	21,020			
4A (0" - 6")		15,510			Duplicate-EEI
4B (6" - 13")	54,000	149,600			
5A (O" - 6")	32,000	112,930	18	28	
5A (O" - 6")	-	-	17	-	Duplicate-IEPA
5B (6" - 14")	20,000	12,050	4.1	5.1	
6 (0" - 8")	120	90			
					,

NOTE: All results in ng/g (ppb).
Blanks indicate below detection limits.

- Indicates parameter not analyzed.
- a Hazelton Raltech, Inc. performed TCDD analysis for IEPA.

8, 15 and 16, all near the proposed pump station, showed the highest concentrations of TCDD (ranging from 13 to 170 ppb).

Based on the results of the sampling done in February and March, 1983, USEPA estimated that 2800 cubic yards of contaminated soil existed at the site. Further sampling was proposed by USEPA to determine the extent of PCB and dioxin contamination, and plans were prepared by Russell and Axon, Inc., a contractor for the Village of Sauget, for a temporary containment facility for the contaminated soil. The USEPA, IEPA, the Village of Sauget, and contractors representing the village were involved in discussions concerning possible remedial alternatives for the contaminated soil. However, no remedial actions have been implemented to date. Presently, a fence encloses the contaminated area, and the surface has been covered with gravel.

The source of the PCB and dioxin contamination on the northwest portion of the site has not been conclusively determined. A likely source is a tank owned by Bliss Waste Oil of Missouri, which was located on the Clayton Chemical Company property. Bliss Waste Oil had four above-ground storage tanks located in the northern portion of Clayton's property which were used to store waste oil and diesel fuel. In February, 1983, a former employee of Bliss informed IEPA of a leaking underground storage tank owned by Bliss in the area of the other tanks. This tank was apparently used to drain unwanted liquid from the above ground tanks.

IEPA located the underground tank and conducted preliminary sampling an excavated area around the tank. Analysis of these samples detected significant levels of PCBs and other priority pollutant organic compounds. In June, 1983, the underground tank was removed by a contractor for Russell Bliss (the former owner), and additional sampling was done to determine the extent of remaining soil contamination. Liquids and sludges in the tank were containerized, along with contaminated soil from the excavation. All containerized materials were removed to a licensed hazardous waste facility by November, 1983.

Data Assessment and Recommendations

Based on the information outlined above, there is significant and widespread contamination in the area of the Sauget Treatment Plant. Additional information is available from Russell and Axon, Inc., and further attempts should be made to secure all data pertaining to chemical wastes in the area from this contractor. A significant amount of analytical data has been generated for the contaminated area west of the treatment plant. However, the horizontal and vertical extent of contamination has not been assessed. Similarly, very little data is available with respect to the former sludge lagoons which would be useful in proposing remedial alteratives.

The present scope of work for this project includes only collecting and cataloging all data pertaining to Site O. Wastes have been characterized in the area west of the treatment plant, and two major contaminants have been identified to a depth of 28 inches in this Data is also available from samples taken in the vicinity of the former sludge lagoons which provides an indication of possible waste types present in the lagoons. The approximate boundaries of the lagoons can be determined based on a review of historical aerial photographs. The data generated to date for Site O indicates that further field investigation is warranted. In order to define specify remedial alternatives, the areas of subsurface soil contamination need to be accurately defined. addition, since the sludge lagoons are not lined, and may have been excavated into the Henry Formation aquifer, a strong possibility for ground water contamination exists.

For the former sludge lagoons, it is recommended that soil borings be completed into the lagoons to a depth sufficient to assess the vertical migration of contaminants from the lagoons. The borings should be located so as to provide intersecting cross sections for mapping purposes, and should cover the entire lagoon area. Samples should be composited for ten foot intervals for each boring and analyzed for all hazard substance list (HSL) compounds. These

borings and samples would provide adequate characaterization of the chemical constituents present in the lagoons and provide information concerning vertical migration of contaminants. In addition, four deeper borings should be completed around the periphery of the lagoons to determine if, or to what extent, wastes have migrated from the lagoons. Detailed field screening would be done on samples from these borings using a portable gas chromatograph (GC). A geophysical investigation using electromagnetics would be completed in conjunction with these borings to define the lateral extent of any contaminant plume that may be present. If initial borings into the lagoons indicate that ground water monitoring is necessary, the deeper borings around the periphery could be used for monitoring well emplacement.

The identified area of soil contamination west of the treatment plant should be more accurately defined. Recommendations for this area include completing several test borings in the area to determine the maximum depth of contamination, followed by grid sampling to accurately define the contaminated area. Samples collected from the test borings could be extracted and analyzed for PCBs in the field using GC. Since they were found at high concentrations in previous samples, PCBs would be a good indicator for other possible contaminants. Following the determination of the maximum depth of contamination, a detailed sampling program should be developed and conducted in order to define the extent of contamination.

Site Description

Site P is an inactive, IEPA-permitted landfill covering approximately 20 acres in Sauget, Illinois (Figure P-1). The site is bordered on the west by the Illinois Central Gulf Railroad; on the south by Monsanto Avenue, and on the east by the Terminal Railroad Association railroad. The two railroads converge to delineate the north boundary. Generally, the geology at the site consists of silty sand, underlain by fine grained to silty clay, followed by fine to coarse grained sands down to the bedrock. Surface drainage is to the south-central portion of the site, which was not landfilled due to the presence of a potable water line in this area. A depression area is also found along the east perimeter, adjacent to the Terminal Surface drainage will not leave the site due to the Railroad. presence of railroad embankments along the perimeter and the depression in the central portion of the site.

Site History and Previous Investigations

Sauget and Company entered into a lease agreement with the Union Electric Company in St. Louis to operate a waste disposal facility in 1972. In January 1973, IEPA issued an operating permit to Sauget and Company to accept only non-chemical waste from Monsanto. Sauget and Company subsequently applied for, and was granted, a supplemental permit in 1974 which allowed acceptance of general waste and diatomaceous earth filter cake from Edwin Cooper, Inc. (now Ethyl Corp.). The IEPA began conducting routine inspections of the facility in 1974, at which time no violations were evident. In October 1975, an inspector observed a small amount of yellowish, tar-like liquid in an area adjacent to several crushed fiber drums which were labelled "Monsanto ACL-85, Chlorine Composition." Sauget and Company and Monsanto were subsequently notified of this permit violation, and the matter was not further addressed. The site was operated in general compliance until December 1977, when an

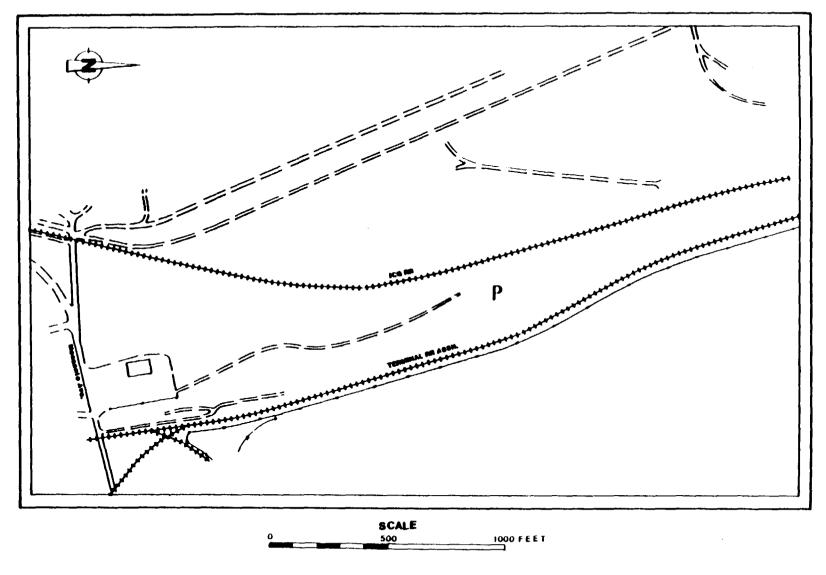


FIGURE P-1 DEAD CREEK SITE AREA P

inspection revealed the disposal of approximately 25 metal containers (12-15 gallon) full of phosphorus pentasulfide (P_2S_5), a flammable solid. Monsanto was required to excavate and remove all of this material from the site, and to discontinue disposal of any chemical wastes or packagings.

The IEPA became aware of another potential problem at this time, specifically the use of a Southern Railway slag pile for intermediate and final cover material. Analysis of this slag showed it to be unsuitable as cover due to its high permeability and heavy metal content. Cinders were also used as cover material at Site P, and are expected to pose the same problems as the slag; that is, increased surface water infiltration and the resulting potential for leaching heavy metals along with organic wastes into the groundwater.

State inspections in 1978 and 1979 indicated unpermitted disposal of Monsanto ACL filter residues and packagings. The composition of this material is not known. According to the site operator at that time, this material would occasionally ignite when in contact with the filter cake waste from Edwin Cooper.

An Illinois American Water Company distribution main was discovered in 1980 during preparatory excavation on the southern portion of the site. The south one-third of the property was purchased from Illinois Central Gulf in 1971 by Paul Sauget. Following discovery of the water line, Site Plans and permits were modified to include no waste disposal within 100 feet of the line.

Review of available IEPA records indicates that the Edwin Cooper filter cake is the only industrial process waste that was reported to have been disposed of at Site P. Records indicate that approximately 117,000 cubic yards of this material was accepted. The filter cake was classified as non-hazardous on special waste authorization permit number 7400017, based on EP toxicity results submitted in 1973. Additional analytical data is available for a filter cake composite sample from Edwin Cooper in 1979 which indicates elevated levels of

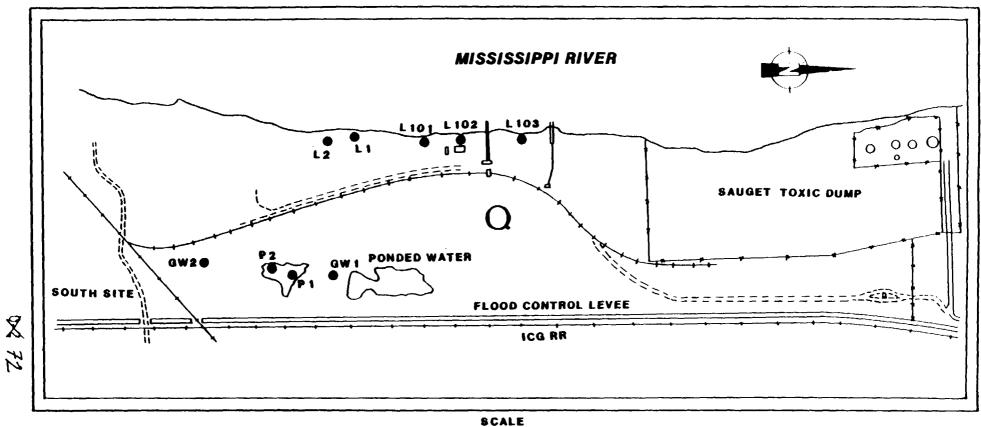
lead (18.4 ppm), cadmium (1.8), zinc (7,220 ppm), and a pH of 11.22. No groundwater monitoring program has been established for Site P, nor have wastes at the site been adequately characterized. No sampling or other field investigation activities have been conducted, other than routine IEPA inspections, at the site.

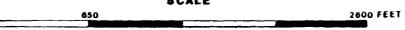
Data Assessment and Recommendations

: г

A groundwater study consisting of installation and sampling of 6 wells is the only planned field investigation for Site P during the Dead Creek Project. Additional investigation will be necessary to adequately characterize the site and to provide an adequate data base for conducting the feasibility study if groundwater contamination is detected. Further evaluation of subsurface soil conditions at the site would be necessary in order to define waste characteristics and the vertical and lateral extent of contamination so that remedial alternatives can be assessed.

SITE Q - SAUGET/SAUGET LANDFILL


Site Description


Site Q is the Sauget/Sauget Landfill, an inactive waste disposal facility operated by Sauget and Company between the years 1966 and 1973. The site is approximately 90 acres in size, including a southern extension, as delineated by the Alton and Southern Railroad tracks (Figure Q-1). The site is located on east bank of the Mississippi River and is also on the river side of a U.S. Army Corps of Engineers flood control levee. Site Q is also situated immediately east of Site R, commonly known at Sauget Toxic Dump, a chemical waste disposal facility owned by the Monsanto Chemical Company.

Site Q was operated without a permit from IEPA, although registration with the Illinois Department of Public Health was obtained for the north site in 1967, prior to the formation of the IEPA. The site is presently covered with black cinders, which is an unsuitable cover material due to its high permeability. Site Q is presently owned by the Riverport Terminal and Fleeting Company, and the property is leased to the Pillsbury Company. Pillsbury operates a coal unloading facility at the site.

Site History and Previous Investgations

Disposal operations at Site Q began in approximately 1966 in the northernmost portion of the property. A Union Electric Company flyash pond existed at the site in an area immediately south of Monsanto's chemical dump. IEPA inspections in the early 1970's of the Illinois **Environmental** several violations documented Protection Act, including open burning, use of unsuitable cover materials (cinders and flyash), and acceptance of liquid chemical Septic tank pumpings were also accepted at the site from approximately 1968 to 1972, and were apparently co-disposed with general municipal refuse.

LEGEND

CH1 IEPA GROUNDWATER SAMPLING LOCATION
P1 IEPA SURFACE WATER SAMPLING LOCATION
L1 IEPA LEACHATE SAMPLING LOCATION

FIGURE Q=1
DEAD CREEK SITE AREA Q WITH SAMPLING LOCATIONS

in April, 1971, a complaint was filed by IEPA against Sauget and Company for the violations mentioned above. The company was ordered to cease and desist open burning, accepting liquid chemical wastes, open dumping, and use of cinders and flyash as cover material. In July, 1972, a smoldering underground fire was observed by IEPA inspectors at the site. The fire continued to smolder until October, 1972 despite repeated attempts to extinguish it. Underground fires were a continuing problem, as documented by later IEPA inspection reports. In the spring of 1973, flood waters from the Mississippi River inundated Site Q. This condition persisted into the fall, and operations at the site were discontinued. Exposed refuse was observed being carried downstream in the river at that time.

Sauget and Company filed a permit application to IEPA in 1972 for a proposed extension to the existing landfill. The proposed extension was located south of the Alton and Southern railroad tracks, and will be referred to as the south site. IEPA denied issuance of a permit for this extension several times, as Sauget and Company had filed repeated applications. Although approval of the south site was never issued, disposal operations continued in this area.

In the early 1970's, IEPA collected several samples from Site Q. Approximate sample locations are shown in Figure Q-1. Analytical data for samples collected from ponded water, leachate seeps, and ground water are provided in Table Q-1. The first set of samples, collected in October, 1972, consisted of one sample from ponded water, and one leachate sample. The results for these samples show the presence of several metals, including copper, iron, lead, mercury, and zinc. Ground water samples were collected in January, 1973 from two monitoring wells at Site Q. Information regarding construction details for these wells has not been located. GW-1 showed trace levels of cadmium, silver, and phenols, while GW-2 showed very little evidence of contamination. Samples were again collected by IEPA from ponded water at Site Q on two occasions in April, 1973. Analytical results showed low levels of boron, cadmium, copper, iron, lead, manganese, mercury, nickel, and zinc in sample

TABLE 0-3: ANALYTICAL RESULTS FOR SOIL SAMPLES AT SITE O. (SPLIT SAMPLES COLLECTED MARCH 12, 1983 BY IEPA AND EEI)

PARAMETERS

		PARAMETERS	
SAMPLE NO. (Depth)	TCDD - IEPAª	TCDD - EEI	COMMENTS
7A (0"- 6") 7B (8" - 16") 8A (0" - 6") 8B (6" - 12) 8C (13" - 18") 8D (18" - 25") 8D (18" - 25")	1.8 77 *	44 Interferences 19 37 56	Duplicate
9A (0" - 6") 9B (6" - 12") 9C (14" - 21") 9D (22" - 28") 10A 10B	1.3 * 0.92 12 *	13	Control Sample Control Sample
11A (0" - 6") 11B (G" - 18") 12 (10" - 19") 13A (0" - 7") 13B (7" - 18") 14 (0" - 6") 15 (0" - 16") 16 (0" - 18")	* * 13 25	13 170	Composite of soil samples

NOTE: All results in ng/g (ppb).

Blanks indicate below detection limits.

* Sample not collected by IEPA.
a Hazelton Raltech, Inc. performed TCDD analysis for IEPA.

TABLE Q-1: ANALYSIS OF SURFACE AND GROUND WATER SAMPLES COLLECTED BY IEPA AT SITE Q

SAMPLE LOCATIONS AND DATES

	10/1		1-17		4-10-73	4-26-73
PARAMETERS	P-1	L-1	GW-1	GW-2	P-2	P-3
Calcium	80	56	310	137	250	280
Magnesium	8	26	57	205	42	44
Sodium	23	169	275	13	230	205
Potassium	6	30	10	4	85	70
Ammonia	0.19	21 .	NA	NA	32	36
Boron	7	6.5	NA	NA	2.6	2.8
Cadmium			0.02		NA	0.02
Chromium (Total)					NA	0.03
Copper		0.01			0.02	
Iron		46			60	67
Lead		0.02			0.07	
Manganese					6	6.5
Mercury (ppb)	0.5	0.5			0.4	0.6
Nickel					0.3	0.2
Silver			0.01			·
Zinc		0.2		0.1	4.2	5
Alkalinity	46	810	645	375	420	
Chloride	19	4	310	24	210	205
Nitrate	NA	NA	NA	NA	NA	
Phosphate	NA	NA	NA	NA	3.7	5
Sulfate	230	18	325	25	350	270
Hardness	240	560	NA	NA	970	930
Phenols	NA	NA	0.02		NA	NA

NOTE: All results in ppm unless noted otherwise. Blanks indicate below detection limit. NA indicated parameter not analyzed.

P = Ponded water, L = Leachate, GW = Groundwater

P-2 and/or P-3. Although the data from samples collected in the early 1970's showed the presence of several contaminants, most notably phenol and heavy metals, no conclusive evidence of contamination at Site Q was obtained.

IEPA collected samples from leachate seeps along the Mississippi River in October, 1981 and again in September, 1983. The locations of these samples are shown in Figure Q-1, and analytical results are presented in Table Q-2. Data for the 1981 samples shows elevated concentrations of arsenic, chromium, copper, lead, managanese, and phosphorus in both samples. Additionally, low levels of phenols and PCBs were detected in the samples. The samples collected in September, 1983 show very similar results. Heavy metals and PCBs were again detected at concentrations very close to those seen in the earlier samples.

The cinders and flyash used as cover materials at Site Q have been the subject of numerous investigations and complaints by IEPA. In addition, the depth of final cover has been deemed inadequate, and enforcement action is pending on this matter. The Illinois Pollution Control Board Case Number 77-84 was filed against Sauget and Company and Paul Sauget in May, 1977. As a result of the findings in this case, a monetary penalty was invoked, and Sauget and Company was ordered to place two feet of suitable cover material on the entire site by February, 1981. Sauget's failure to comply with these orders led the Illinois Attorney General's office to file a similar case. Site Q has been a chronic enforcement problem, and recently Paul Sauget was found in contempt of court for failure to comply with court orders.

Laboratory tests run on the cinders and flyash indicate permeability values in the range of 9 x 10^{-3} centimeters per second, which is considered unsuitable by IEPA. In addition, metals analysis of the cover material showed unacceptably high levels of arsenic, copper, lead, and zinc. In 1972, IEPA collected samples from stockpiled flyash at Site Q, and ran leach tests for inorganic constituents.

TABLE Q-2: ANALYSIS OF LEACHATE SAMPLES FROM SITE Q (COLLECTED OCTOBER 28, 1981 AND SEPTEMBER 29, 1983 BY IEPA)

SAMPLE LOCATIONS AND DATES

		SAMPLE L	OCATIONS	AND DATES	
PARAMETERS	<u>10-2</u> L-1	L-2	L101	9-29-83 L012	L103
Alkalinity	255	293	191	158	242
Ammonia	3.8	2.8	6.5	4	3.7
Arsenic	0.057	0.022	0.11	0.034	0.012
Barium	0.8	0.2	0.5	0.4	0.3
Boron	5.8	5.6	37.5	42	23
Cadmium					
COD	445	35	87	94	71
Chloride	15	17	23	22	31
Chromium (Total)	0.08		0.03	0.01	
Copper	0.2	0.04	1.2	0.06	
Cyanide			1	0.01	0.01
Hardness	1330	1220	1225	1360	1045
Iron	207	17.5	86	36	6.4
Lead	0.26		0.13	0.08	0.02
Magnesium	145	67	81	73	44.5
Manganese	7.7	34	6.7	6.8	2.7
Mercury			}		
Nickel	0.3		0.1	0.1	
Nitrate	0.24	0.4	0.21	6.1	1.8
Phosphorus	6.1	0.74	3.1	1.3	0.86
Potassium	16.5	9.5	13.4	13.5	17
R.O.E.	1980	1829	1880	2118	1563
Silver	0.02	0.01	0.01		
Sodium	55.7	53.3	56	70	51
Sulfate	1196	1059	1200	1350	900
Zinc	1.2	0.2	0.3	0.2	
Phenol	0.005	0.005			
PCBs (PPB)	0.7	1	0.5		0.1
2,3-0(PPB)					

NOTE: All results in ppm unless noted otherwise. Blanks indicate below detection limits.

Samples were taken from piles estimated to be 5 years old, 1 year old, and fresh material to determine the types and quantities of contaminants being leached from this material at the site. Analytical data for these samples are shown in Table Q-3. Analysis of the first set of samples (August, 1972) shows a distinct trend of the more soluble compounds, such as calcium, sodium and potassium, being leached from the fresh ash. However, the second set of samples, collected in October 1972, does not show a similar trend. The reasons for this discrepancy are not clear. The data in Table Q-3 also shows that significant quantities of metals are contained in the ash, particularly for the material estimated to be five years old.

IEPA's Notices of Violations concerning disposal of chemical wastes at Site Q in early inspections are supported by more recent information. Notification of Hazardous Waste Site Forms were submitted to USEPA from three companies for this site. These notifications indicate disposal of organics, inorganics, solvents, pesticides, paint sludges, and unknown wastes at the site. In May, 1980 workers uncovered buried drums and unknown wastes while excavating for construction of a railroad spur on the property. Workers observed a haze or smoke rising from the material after it was uncovered, suggesting corrosive and/or reactive properties.

In November, 1985, IEPA received a sketch from a reporter for a St. Louis newspaper indicating the location of buried drums containing PCBs. The reporter's source of this information is not known, nor has the information been verified to date.

As a result of the May, 1980 incident in which buried drums were unearthed, USEPA tasked its FIT contractor (Ecology and Environment, Inc.) to perform a detailed study to determine the extent of chemical contamination at Site Q. The study included a systematic geophysical investigation using EM, magnetometry, and ground penetrating radar (GPR), followed by a drilling and sampling program to investigate possible subsurface contamination. The investigation was limited

TABLE Q-3: ANALYSIS OF FLYASH USED AS COVER FROM STOCKPILES AT SITE Q (SAMPLED BY IEPA IN 1972)

SAMPLE NUMBERS AND DATES

		8/3/72			10/16/72	
PARAMETERS	5 Years	1 Year	Fresh	5 Years	1 Year	Fresh
Calcium	125	245	285	580	120	130
Magnesium	4.6	6.4	0.5	9	2	
Sodium	10	7.5	58	140	1.3	36
Potassium	7	11	79	56	2	45
Ammonia	1.8	0.36	0.47	0.75	0.05	0.15
Arsenic	NA	NA	NA			0.02
Barium	0.1		0.1			
Boron	0.9	3.6	1.8	1.3	0.6	2.4
Cadmium	0.01	0.01	0.02	0.02		
Chromium				0.03		
Copper	0.09	0.01	0.01	0.06		
Iron	1.3	0.1		0.85	0.1	
Lead	0.03			0.02	0.01	0.02
' Manganese	0.69	0.03	0.03	0.75		
Mercury (ppb)	6			6.2		
Nickel	0.1	0.1	0.2	0.12	0.05	0.05
Silver	0.005	0.005	0.005			
Zinc	0.8	0.1		1.05	0.05	0.02
Alkalinity	140	65	120	120	80	135
Chloride	10	12	60	150	4	49
Flouride	0.2	0.2	0.1	0.3	0.3	0.2
Phosphate	NA	NA	NA	1.6	0.07	0.05
Sulfate	290	950	1300	1600	250	270
Hardness	4 20	1000	1400	1600	340	350
COD	250	33	52	460	26	45

NOTE: All results in ppm unless noted otherwise. Blanks indicate below detection limit. NA indicates parameter not analyzed.

to the northern portion of the site which amounts to approximately 25 percent of the site area.

Technos, Inc. of Miami, Florida was contracted to perform the geophysical investigation. This investigation was completed in June 1983. Results of the geophysical investigation identified the probable limits of landfilling and burial zones of relatively large concentrations of iron bearing materials such as drums or car bodies. These iron bearing zones were found in several distinct locations in the north-central and western portions of the study area.

Following the geophysical investigation, a drilling/sampling program was conducted to determine if subsurface soils were contaminated. The program consisted of drilling 18 test borings through the landfill, and collecting 35 soil samples for full priority pollutant analysis, as designated by USEPA. Subsurface soil samples were collected at depths ranging from 10 to 26 feet. Sample locations are shown in Figure Q-2. Analytical data for the soil samples are shown in Table Q-4, which consists of five pages. As can be seen in the table, a wide variety of organic compounds were detected at high concentrations in these samples. The sample analysis consisted of testing for 112 organic compounds, and 63 compounds were confirmed to be present in the subsurface samples.

Specifically, the data showed that thirty-four organic compounds were found at concentrations of 10 ppm or greater. Of these 34 compounds, 20 compounds were detected at concentrations 100 ppm or greater. And of these 20 compounds, 7 compounds were detected at concentrations of 1000 ppm or greater. Compounds detected at concentrations of 1000 ppm or greater include 2,4-dichlorophenol, 1,2,4-trichlorobenzene, 1,4-dichlorobenzene, bis(2-ethylhexyl) phthalate, toluene, o-xylene, and PCB-1260. In addition, 2,3,7,8-TCDD was detected in two samples (B4B and B8B). Compounds detected in samples taken from Site Q include many of the same compounds as detected in samples taken from Site R, the Sauget Toxic Dump site. Contamination was detected

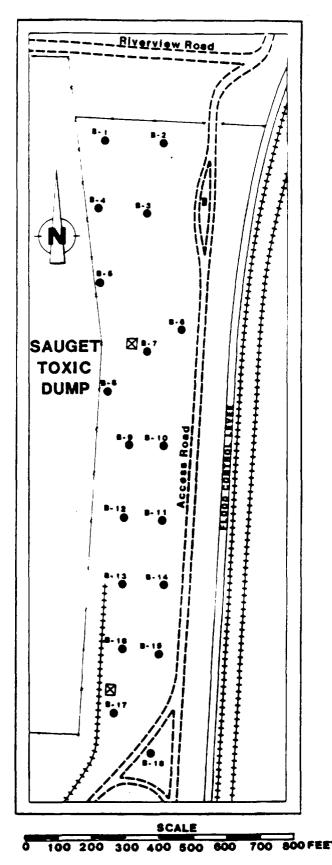


FIGURE Q-2 USEPA - FIT SUBSURFACE SOIL SAMPLING LOCATIONS AT SITE Q

TABLE Q-A: IDENTIFIED ORGANIC COMPOUNDS IN SUBSUMFACE SOIL SAMPLES FROM SITE Q (SAMPLES COLLECTED JULY 13, THROUGH JULY 20, 1983 BY ECOLOGY AND ENVIRONMENT, INC.)

BORING/SAMPLE NUMBER

				DEPTH (In				
PARAMETERS	BIA 10.0-11.5	8IB 17.5-19.0	82A 13.5-15.5	828 17.0-19.0	83A 10.0-12.0	638 13,5-15,5	84A 10.0-12.0	848
2, 3, 7, 8-1CDD	10,0411.5	17.3-19.0	17.3-17.7	17.0-19.0	10.0-12.0	13.3-13.3	10.0-12.0	13.5-1 3.31
2,4,6-trichlorephenol	2,500	170,000	22,000	520	1,400	1,500		94,000
-chi prophenol	24,000	65,000	600	740	1,500	1, 200 LT	57, 000	360,000
. 4=dichlorophenol	66,000	3,100,000	31,000	1790	760	4,500	<i>77</i> , 000	370,000
Z, 4-dimethyphenol	30, 300	>,,	500	.,,	, 440	•, , , , , ,		72,000
1,6-dinitro-2-methylphenol			,					72,000
entachlorophenol		86,000	5, 400	LŤ		11,000		100,000
chenel	24,000	55,000	45,000	4,400	3,200	100,000	98,000	98,000
2-methylphenol-							70,000	35,00
-eethylphenol			LT		560	LT		330,000
2.4.5-trichlorophenel				LT				220,000
censolithens			1,200	2, 800				
1, 2, 4-trichlorobenzene			.,	440			LT	100,000
1.2-dichloropenzene	LT		LT			LĪ	٠,	20,000
,4-dichlorobenzene			1,800	720	LT	760	LT	66,000
Tuoranthene			- , , , , , , , , , , , , , , , , , , ,	1,200	· · · · · · · · · · · · · · · · · · ·	, 00		00,000
sophorone				.,				L,
apthelene			11,000	9, 300				
itotpenzene	1	8,800	400	٠, ٨٠٠				L1
(-urticleographenisterine		a, 900	••••					56,000
				Lf				/3 000
pie(2-ethylhexyl)phthelate				r,				62,000
outyl benzyl phthelate	LT							
n-butyl phthelete	L1							LI
ii-n-octyl phthelate								
(Lethy) phthelate								
enzo(a)enthracene								
penzo(e)pyrene								
enzo(b)fluoranthene								
benzo(k)fluorenthene								
hrysene				400				
enthracene								
enzo(ghi)perylene			_					
/luorene			600	3,000				L7
phenenthrene			1,000	2,700				LĪ
dibenzo(e,h)anthrecene								
Indens(1,2,3-cd)phrene								
yrene				LT				LT
nulline entitle		•						
t-chloreniline			LT					
subenzo fuz en			1,000	3,000				
2-esthylnepthsiene	*		2,000	2,300				
3-nitroeniline			4,600					
penzene			•					
hiprobenzene							10,000	40,000
.2-dichloroethene							•	
1.1-dichloroethene								
1,1,2,2-tetrachleroethene								
.2-trans-dichloroethens								
thylbenzene								
ethylene chloride			7.4	3.7	LN	8.0		
etrachloroethene								
alume								
richloroethene								
			960			977		LH
cetone			760			711		<u>.</u>
-but anone						LT		
-aethy1-2-pentangne						C1		
tyrene							·	- 7
)-xylene				2.0				5,100
CB-124Z								
C81254								
C8-1246	1,000							
C9-1260			445.2		49.4			
CB-1016			2, 120. 6					
otal PCB							68,000	1,000,000

NOTE: All results in ppb.

LT = Present, but lower then the detection limit for low hazard snalyses.

LM = Present, but lower then the detection limit for sedium hazard snalyses.

P= The sample could not be cleaned up sufficiently to yield TCDD results.

NA = Not enalyzed, sample could not be cleaned up sufficiently.

Blank = not detected.

BORING/SAMPLE MUMBER

toluene truchloroethene 50,000 LT 6.1 LT content truchloroethene 50,000 LT 6.1 LT content truchloroethene 530 200 2,600 2-600					Depth (1	n feet)			
######################################									
2.3.71,8.1CICO	0.001					l .		1	1
12.4 - 1.4 - 1.4 - 1.5		13.3-13.7	17.0-19.0	10.0-12.0	13.3-13.3	10.0-12.0	13.3-15.5	13.5-15.5	
2-ph lorosement	1	130 000	24,000	2 700	A 800	2 2000		480 000	
24-decidenty-interval 24-0,000		·			•	•		480,000	10,000
2,-000 3,-000 14,000 25,000 1,000 21	· · · · · · · · · · · · · · · · · · ·							1 500 000	44 000
### ### ##############################		200,000	100,000		15,000	6, 100		1, 200, 000	≈ , 000
pentent incorporate journal pentent pe				2,000					
Description 140,000 230,000 11,000 1,800 1	-				14 000	25 DOD	31 000		
2-earth/plames		140,000	250 000	A5 000			21,000		
### Assembly planned \$4,000		,	2,0,000						
2.4,3-1z-inchiorophemia seementhemen			36,000						
1,2-4-tree informations 1,2-4-tree infor	*		70,000	,,	.,				
1,2,4-fix-in-Increasersem 100,000 28,000 170,000 180,000									
1.2-dischlorosensens 100,000 28,000 UT 180,000 1.2 180,000 UT 180,		84 000	13,000					120.000	
1,4-dischleromensorm		•		1 7				•	
Flueres there is a part of the control of the contr		100,000	,		800			,00,000	
				27.00					
IT 800 LT \$40,000 LT \$40,000 LT \$40,000 LT \$52,000 LT \$52									
Number N			LŤ	800	L T			380.000	l T
Monitorodiphenylasina biolic 2-ethyl phthalate biotyl benzyl phthalate biotyl benzyl phthalate dis-modyl phthalate dis-modyl phthalate dis-modyl phthalate benzyl phthalate benzyl phthalate dis-modyl phthalate benzyl phthalate b	· · · ·	27.000			••				
bia(2=thy)heyl)phthaists di-n-extyl phthaists di-n-		,	.,					,	
Doty Dentails Description Descriptio	•								
di-monty phthalste distribute distrib									
district			· · · · · · · · · · · · · · · · · · ·	400	LĪ				
Section Sect									
Denze (a) provided Denze (b) provided Denze (,								
Dentar(a)pyreme LT									
Denzo (s) Truer entheme LT	•						LT		
Denze () Fluorantheme LT	•						LT		
Chrysene anthreams behand (ph.)perylane fluarane phenanthrene dibenzo(a,h)anthreame indend(1,2,3-cd)phrane pyrane aniline 4-chloraniline 3,000 4-chloraniline 3,2	1								
### ### ##############################							LT		
Fluerane Phenanthrone Phenanth									
Fluerane Phenanthrone Phenanth	benzo(ghi)perylene								
dibenzo(s,h)anthracene indemo(1,2,3-cd)phrane pyrone									
Indemo(1,2,3-ed)phrene Pyrene Pyr	phenenthrene								
Indemo(1,2,3-ed)phrene Pyrene Pyr	dibenzo(e,h)anthracene								
pyrene eniline 4-chloraniline dibenzofuren 2-esthylnepthelene 3-nitroaniline benzene 18,000 27,000 100,000 8.4 4.2 7,100 1,2-dichloroethene 1,1,2,2-tetrechloroethene 1,1,2,2-tetrechloroethene 1,2-trene-dichloroethene 1,1-trene-dichloroethene 1,1									
### Action									-
Section Color of the part	eniline		-						
2-methylnepthalene 3-nitromniline benzene 18,000 27,000 100,000 8.4 4.2 7,100 1,2-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,1-2,-testrachloroethene 1,2-treme-dichloroethene 1,1-0,000 1-0	4-chloreniline			9,000					
3-nitroanline benzene 3,2 LM Chlorobenzene 18,000 27,000 100,000 8.4 4.2 7,100 1,2-dichloroethene 1,1-dichloroethene 1,1-dichloroethene 1,2-terme-dichloroethene 1,2-terme	dibenzofuren								
Denzeme 18,000 27,000 100,000 8.4 4.2 7,100 1,2-dachlorosthere 12,000 3.4 1,1-dachlorosthere	2-esthylnepthelene								
Chlorobenzene 18,000 27,000 100,000 8.4 4.2 7,100 1,2-dichlorosthere 12,000 3.4 1,1-dichlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,2-testrachlorosthere 1,1,00 1,1,000 1,1,000 1,1,000	3-nitroeniline								
1,2-dichloroethane 1,1-dichloroethane 1,1,2-Z-tetrachloroethane 1,1,2-Z-tetrachloroethane 1,2-teras-dichloroethane 1,2-te	benzene						3.2		
1,1-dichlorosthene 1,1,2,2-terschlorosthene 1,2-trene-dichlorosthene 1,2-trene-dichlorosthene 1,2-trene-dichlorosthene 1,5-0 86.0 45.0 LT tetrschlorosthene 15.0 86.0 45.0 LT tetrschlorosthene 15.0 15.0 LT toluene 15.0 15.0 LT trichlorosthene 15.0 200 2,600 LT trichlorosthene 15.0 200 2,600 LT trichlorosthene 15.0 200 2,600 2-butarone 2-butarone 15.0 LT 4-eacthyl-2-pentamene 15.0 LT 17.00 2,700 #CS-1242 #CS-1242 #CS-1246 #CS-124	Chlarabenzene	18,000	27,000	100,000	0.	4	4,	2 7,100	
1,1,2,2-terme-dichlorosthene 1,2-trane-dichlorosthene 1,2-trane-dichlorosthene 1,2-trane-dichlorosthene 15.0 86.0 45.0 LT tetrachlorosthene 15.0 86.0 45.0 LT tetrachlorosthene 15.0 86.0 45.0 LT tetrachlorosthene 15.0 86.0 45.0 LT toluene 15.0 86.0 45.0 LT toluene 15.0 86.0 45.0 LT toluene 15.0 LT trichlorosthene 2-butanone 2-butanone 1 LT 4-esthyl-2-pentamene 8tyrene 0-sylene 0-s	1,2-dichloroethene			12,000	3.	4			
1,2-trame-dichlorosthene ethylbenzens	1,1-dichlorosthene								
### ### ##############################	1,1,2,2-tetrachloroethene								
### ### ##############################	1,2-trans-dichlorosthens								
tetrachloroethene toluene toluene 50,000 LT 6.1 trichloroethene cetone 330 200 2,600 2-butanone 2-butanone 4-methyl-2-pentanone styrene 0-xylene 70,000 13.0 LT 22.0 PCB-1282 70,000 PCB-1286 40,000 PCB-1280 590 13,000 880 1,500 PCB-1016 2,300 46,000	ethylbenzens			44,000					
tolumne truchloroethene		·			15.		45.0	D LT	
truchloroethene	tetrachloroethene					LT		_	
ecetone 230 200 2,600 2 2-butenone LT	toluene			50,000	LT			ı	
2-but anone 4-methyl-2-pentanene styrene 0-sylene PCB-1242 70,000 140,000 15.0 1,700 2,700 PCB-1248 PCB-1249 PCB-1240 PCB-1260 PCB-1016 140,000 PCB-1016 140,000 PCB-1016 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	trichloroethene								
A-methyl-2-pentanene styrene 0-xylene 0-xylene 0-xylene 70,000 140,000 15.0 1,700 2,700 1,700 2,700 PCB-1240 4,700 PCB-1240 PCB-1016	_						-		
### ##################################					LT	LT	LT		
0-xylene	, ,								
PCB=1282 70,000 1,700 2,700 PCB=1284 40,000 PCB=1248 4,700 PCB=1260 590 13,000 880 1,500 PCB=1016 2,300 46,000									
PCB1254 60,000 4,700 590 13,000 880 1,500 PCB-1260 2,300 46,000	0-xylene			140,000	13.	נו נו	22.1		
PCB=1248 4,700 PCB=1260 590 13,000 880 1,500 PCB=1016 2,300 46,000								1,700	2, 700
PCS=1260 590 13,000 880 1,500 PCS=1016 2,300 46,000		60, 000							
PCB-1016 2,300 44,000					à, 700				
								5 6 0	1,500
	PCS-1016 Total PCS		66,000			2, 300	46, 000		

All results in ppb. LT x Present, but lower then the detection limit for low hezerd enalyses. LH x Present, but lower then the detection limit for medium hezerd enalyses.

P * The sample could not be cleaned up sufficiently to yield TCDD results. MA * Not analyzed, sample could not be cleaned up sufficiently.

Blank : Not detected.

DEPTH (in feet)

PCB-1246 PCB-1246 PCB-1240 PCB-1016	O-eviene PCB-1242	2-but enone 4-agrthy1-2-pentamone styrene	tellere trushioroethere eretore	tet: achloroethene	ethylbenzene	1, 1, 2, 2-tetrachloroethers	1, 1-dichlorgethene	OL probenzene	ber z and	2-1:trountine 2-eschytospeneters	מבשתמסלעדפה	4-chloraniline	פאנין זהם	indens(1,2,3-cd)ghrene	disense (a,h)enthe some	71 LD FORM	benzo (ght) perylana	BUEST BUSTO	CULTABOR CULTABOR	benzo(b) fluor enthene	beras (a) pyrene	benzo(a)enthracene	di-moctyl pithelate	dibutyl phthelete	but vi benzyl phthelete	hard tromodiphenylemine	ni turbenzene	1 BOSTOTONE	11 acranthena	1, A-dichloropenzene	1.2.4-trichlorobenzene	ac a aghthána	2. 4. S-trichlarophenal	Z-esthylphenol-	pres)	a, a-dinitro-1-metnyiphenoi	2. A-disethyphenol	2, audichlorophenol	2-cm1 oroghenol	2. 4. 6-trichlorephenol	PARAMETERS	
1, 508	60		210		J.1												-						•			<u> </u>								i	7,500	-		7, 400	£	5	15.0-17.0	894
1, 300			i.e., 000		ğ																	į	;	1, 500						נז			, x	İ	14,000	•		9,800	1	ê	17.0-19.0	888
***	M), 000		130,000 000		:: 88			5, 200	Ē															רו			:	ř Š		27,000	: : : : : : : : : : : : : : : : : : : :		/æ	i	32,000			170,000	ı, 700	\$ 8	17.0-19.0	8104
120			÷.		<u>-</u>									:																					11,000	2. 20B		9.6	5	Ê	19.0-21.0	
3,000	650,000		.; 300, .2, 000		220,000			5		, c	10.00		E			5. 298			6.48					23,000	ני	\$2.000		7,000		<u>-</u> -	·				6,200			3, 2 00		•	17.0-19.0	BIIA
70,000 681,000	70,000		9.00																					רו		1		35.000 LT							37,000			20,000		•	19.0-21.0	9118
7,000		נז																								\$ 5	; :	-					1,000		17,000	24.000		8, 800	1,200	. 60	17.0-19.0	812A
5,000	5		<u> </u>									5								3.5	 							£ 70		 8 8	i		720	!	7, X8	1		4, 200	520	 8	19.0-21.0	51 2 6

All results in ppb.

I's Present, but lower than the detection limit for low hazard shalyees.

L's Present, but lower than the detection limit for medium hazard shalyees.

P is The sample could not be clemed up sufficiently to yield TCDD results.

MA is to analyzed, emple could not be clemed up sufficiently.

Blank is Not detected.

BORING/SAMPLE MUNBER

				Depth (1n				
				1		1	1	T
	813A	6K 10	8144	8146	815A	B150	B16A	817A
PARAMETERS	17.0-19.0	19.0-21.0	17.0-19.0	19.0-21.0	22.0-24.0	24.0-26.0	22.0-24.0	22.0-24.0
2, 3, 7, 8-TCDO								
2,4,6-trichlorephenol	20,000	4, 600			600	1, 900	7, 700	6, 400
2-chlorophenol	2, 500	3, 800			400	1, 600	4, 600	100,000
2, 4=dichlorophenol	9, 400	11,000	460,000			11,000	27, 000	120,000
2,4-disethyphenal		LT					680	
4,6-dunitro-2-eathylphenol	LT							
pentachiorophenoi	12,000	44,000	16,000	16-00		12,000	39,000	26,000
phenol	8,900	15,000			6,000	13,000	16,000	50,000
2-methylphonol-	770			44				
4-methylphenol	720	1,400		16,000		1,000	1, 900	9, 200
2,4,5-trichlorophenol acenephthene							LT	
1, 2, 4-trichlorobenzene	2,400	3,000	13,000,000	2,000,000				
1, 2, 4-cr ichtarabenzene 1, 2-dichtarabenzene	2, 400	2,000	620,000	55,000			. •	
1,4-dichlorobenzene	1,300	2,000	1,200,000	100,000		1,600	LT	
fluorenthene	1,700	2,000	7,200,000	100,000		1,800	4,100	
1 apphorane				14,000				
napthelene		LT	210,000	20,000		720	z, 000	
unto tpeuseue			2.3,500	,		/20	., 000	
N-nitrosodiphenylasine		400						
bis(2-ethylhexyl)phthelate		-~·	1,100,000	220,000			4, 400	
butyl benzyl phthelate			.,,	LT		LT	-,	
di-n-butyl phthelate		ĻŤ	900,000	49,000	LT	3, 800		
di-n-octyl phthelete		LT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	-	.,		
diethyl phthelete		•				LT		
benzo(e)enthrecene								
benzo(s)pyrene	LT							
benzo(b)flurorenthene	1, 300*							
benzo(k)fluroranthene	1,300*							
chrysene								
enthrecene								
benzo(ghi)perylene	860							
fluorene								
phenenthrene								
dubenzo(a,h)enthrecene	LT							
indena(1,2,3-cd)phrene	LT							
pyrene								
austrue							680	
4-chloreniline	LT	2, 200					9 , 6 00	
dabenzofuren								
2-asthylnapthelane				LT				
3-nitromniline								
benzene	·		44,000					
Onl orobenzene			63,000	LH				
1,2-dichloroethane								
1,1-dichloroethene			19,000					
1, 1, 2, 2-tetrachloroethane			5, 700					
1,2-trans-dichloroethene			11,000	330,000	LŤ			
ethylbenzene	50.0	13.0	790,000 5, 80 0	770,000	2.5	23.0		LM
esthylene chloride	77.1	17.0	12,000		4.7	27.0		
tetrachloroethene toluene			2, 400, 000	540,000				
trichlaraethene			55,000					
acetoue Carcutaroecueue	70.0	430	,		540	1,400		
2-but anone	~	4,5	LH			.,		
4-asthyl-2-pantanone		LĪ	250,000		LT			
etyrene				64,000	4.2	5.3		
0-xylene			2, 300, 000	1,400,000		LŤ		
PCB-1242				,		5,000		
PCB 1254								
PCB-1248								
PCB-1260	770	1, 300	2, 900, 000	16,000,000	190	1,000	370	68.0
PCB-1016	- · · -	•		•	210			
Total FCB								

All results in ppb. LT \times Present, but lower than the detection limit for low hazard enalyses. LM \sim Present, but lower than the detection limit for medium hexard enalyses P \times The sample could not be cleaned up sufficiently to yield TCDD results. MA \times Not enalyzed, sample could not be cleaned up sufficiently.

Blank = Not detected.

BORING/SAMPLE HUNGER

				Depth (10			
PARAMETERS	8178 24.0-26.0	818A 22.0-24.0	8100 24.0-26.0	Blank 1	Blank 2	Spiter	Spike @1.0 ppb
1,3,7,8-1000	1410-1410		1			61.0 ppb 0.37	0.9
2,4,6-trichlorephenol						••••	
2-chlorophenol							
2.4=dichlorophenol	3, 800						
Z,4-dimethyphenel	2,000						
4,6-dinitro-2-methylphonol							
pentschlorophenel							
phenol							
2-sethylphenel-							
t-cethylphongl							
2,4,5-trichlarophenal							
cenaphthene							
1,2,4-trichlorobenzene							
1,2-dichlarabenzene							
1,4-dichlorobenzene	550		LT				
fluoranthene					1,000		
aphorone							
napthalene							
nitorbenzene							
N-nitroeodiphenylamine							
	580	910	1,400	LT			
bis(2-ethylhexyl)phthelate	760	714	1,400	۲,			
butyl benzyl phthelate							
di-n-butyl phthelate			LŤ				
di-n-octyl phthelete		LT					
diethyl phthelete							
enzo(a)anthracene		520			600		
benzo(a)pyrene		7.00			LT		
		LT			ίī		
benzo(b)flu							
benzo(k)fluorenthene		LĪ			LT		
cut Ageue		640			340		
enthe scene							
benza (ghz) pery lene							
fluorene							
phenenthrene					720		
					/10		
dibenze(e,h)enthrecene							
indeho(1,2,3-cd)phrene							
PYTERE		F.2			900		
eniline	51,000	1,700					
4-chloreniline		960					
dibenzofuren							
2-asthylnepthelene							
3-nitrogniline							
benzene							
Chlorobenzene	4, 1						
1,2-dichloroethene							
1,1-dichloroethene							
1,1,2,2-tetrachloroethene							
1,2-trans-dichloroethene							
e thy i benzane	7.7						
methylene chloride	6.1	19.0	47.0	LM	6.9		
tetrachloroethene			-				
taluene							
trichloroethene							
ecetane	2,000		260				
	-, 000		•				
2-but anone							
4-methy1-2-pentanone							
styrene							
0-xylene	23.0						
PCB-1242							
PCB1254							
FCB-1248							
	178		2, 400		260		
PCB-1260	160		4, 400				
PCB-1016							
Total PCB	İ	670					

All results in ppb. LT = Present, but lower then the detection limit for low hezard enalyses. LH = Present, but lower then the detection limit for ending hezard analyses. P = The sample could of be cleaned up sufficiently to yield TCDD results. NA = Not energized, sample, could not be cleaned up sufficiently. Blank = Not detected.

across the entire area investigated, which suggests that disposal of large quantities of chemical wastes occurred specifically in the northern portion of Site Q and probably over the entire site area.

Data Assessment and Recommendations

The data developed to date for Site Q shows significant overall contamination at the site. Leachate samples collected from the west-central portion of the site contained phenols, PCBs, and several Data collected prior to 1980 show general degradation of water quality, as evidenced by the analysis of leachate and pond water samples. The cinders and flyash used as cover material over the entire site have been shown to contain elevated levels of heavy metals, and also to be highly permeable. The subsurface soil investigation conducted in 1983 indicated widespread organic contamination to a depth of 26 feet in the northern portion of This study provides the only depth and area-specific information available for the site concerning chemical contamination. Since the 1983 study was limited to approximately 25 percent of the total site area, it is apparent that further investigation is necessary for Site Q.

Field activities presently scheduled at Site Q for the Dead Creek Project include the installation and sampling of seven monitoring wells and ambient air monitoring. This would provide limited information concerning overall site contamination, but would not be adequate to permit a detailed feasibility study of specific remedial options. Further field activities should include additional geophysical investigations and subsurface soil sampling for areas not covered in the 1983 investigation, plus infiltration tests, hydraulic conductivity tests, ground water monitoring, and an assessment of the ground water hydrology in relation to the river.

The proposed geophysical surveys should be conducted in both on- and off-site areas to delineate any off-site migration of contaminant plumes and other possible drum burial areas. Infiltration tests would be conducted at several locations to determine the adequacy of

cover material, and to provide an estimate of leachate production. The ground and surface hydrology should be assessed over a period of time sufficient to address seasonal fluctuations. This assessment would provide data to determine ground water discharge and recharge in relation to the river. Additional investigation, if necessary, would be proposed following the completion of these activities.

Site Description

Site R is the Sauget Toxic Dump, an inactive industrial waste landfill used by the Monsanto Chemical Company between the years 1957 and 1977. Site R occupies approximately 36 acres adjacent to the Mississippi River in Sauget, Illinois. The site is located immediately west of Site Q, commonly known as the Sauget Landfill. Site R is presently covered with a clay cap and vegetated, and drainage is directed to ditches around the perimeter of the site. A Monsanto feedstock tank farm is located adjacent to the site on the northwest side.

Site History and Previous Investigation

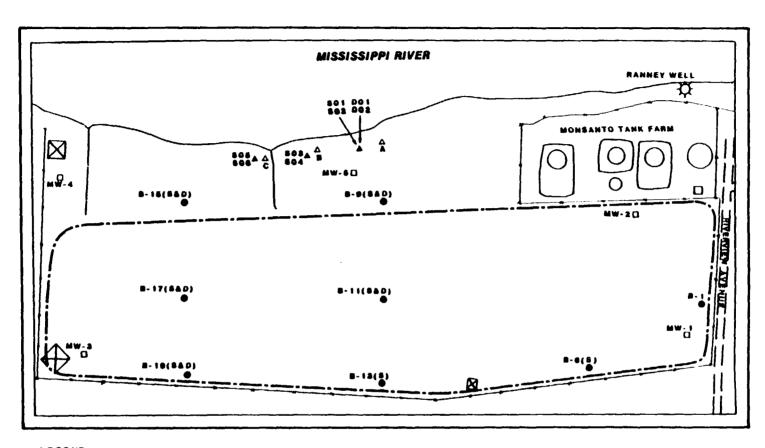
Site R, also known as the Krummrich Landfill, was operated by Sauget and Company under contract with Monsanto. According to an Eckhardt Report summary sheet submitted in 1979 by Monsanto, approximately 262,500 tons of liquid and solid industrial wastes were disposed of at Site R from Monsanto plants in Sauget and St. Louis. In 1981, Monsanto submitted two Notification of Hazardous Waste Site Forms for Site R to the USEPA. The Monsanto W.G. Krummrich Plant (Sauget) listed 290,000 cubic yards (c.y.) of organics, inorganics, solvents, pesticides, and heavy metals as having been disposed at Site R. The Monsanto J. F. Queeny Plant (St. Louis) listed 6600 c.y. of the same waste types as above. Both notifications also indicated belowground disposal of drums.

Monsanto has also submitted two reports to IEPA outling waste types and volumes disposed of at Site R for the years 1968 and 1972. Data compiled from these reports are summarized in Table R-1. This tabulation shows that the volume of wastes landfilled in 1972 was significantly lower than that in 1968. This reduction reflects the elimination of several major production operations at Monsanto's Krummrich Plant. By 1975, the majority of chemical waste disposal at

TABLE R-1: A LISTING OF WASTE TYPES AND APPROXIMATE QUANTITIES DEPOSITED AT SITE R AS REPORTED BY MONSANTO

	Approximate Annual	Volume (Cubic 1968	Yards) 1972
Still Residues			
From Distillation of:		1700	
Nitroaniline and Similar Compounds Cresols, Esters of Phenol		1700	94
Chlorophenol, Chlorophenol Ether		1070	1140 774
Aniline Derivatives		1300	208
Chlorobenzol		130	13
Nitro Benzene Derivatives		100	1190
Phenol		1020	1250
Aromatic Caboxylic Acids		1500	
Chlorinated Hydrocarbons			425
			•
By Products		1700	705
Mixed Isomers of Nitrochlorobenzene Mixed Isomers of Dichlorophenol		1700	785
Waste Maleic Anhydride		3000 730	1240
Waste Chlorobenzenes and Nitrochlorob	en zene	120	
		120	
Contaminated Acids and Caustic			
Waste Sulfuric Acid with Chloropenol		1500	1395
Waste Caustic Soda with Chlorophenol	Present	5300	1760
Marks Calmarks			
Waste Solvents	+	600	
Waste Methanol Contaminated with Merc Waste Isopropanol (Water and Chlorina		600 5500	
Miscellaneous Solvents	ced nydrocarbon)	1019	
Oily Material		1019	
orig thater far		101	
Filter Sludges			
Spent Carbon or Other Filter Media		600	12
Lime Mud from Nitroaniline Productio	n	1000	1195
Gypsum			5600
Obsolote Camples and Campling Wastes			
Obsolete Samples and Sampling Wastes Chlorophenols		72	40
Laboratory Samples		208	150
canor weer y comprise	Total		6,021

NOTE: Blanks indicate waste type not reported.


Site R had been terminated, as wastes were either hauled to other disposal facilities or incinerated on the plant site.

Very little information is available concerning disposal activities at Site R prior to 1967. In March, 1967, Sauget and Company filed an application for registration to operate a refuse disposal facility to the Illinois Department of Public Health. Health Department inspection reports from 1967 indicate disposal of liquid chemical wastes and metal containers from Monsanto. Liquids were pumped from tank trucks and drums into several pits around the site. Cinders were used as intermediate cover material.

In August, 1968, the Illinois Department of Public Health collected five ground water samples from on-site monitoring wells. The locations of these wells are shown in Figure R+1, and analytical results are presented in Table R-2. Phenols were detected in all wells at concentrations ranging from 15 to 1220 ppb. Alkalinity and total solids were also analyzed for, but no significant conclusions can be made from the data for these parameters.

IEPA began making routine inspections at Site R in 1971. Photographs of the site at this time suggest that wastes were disposed of in direct contact with the ground water. No segregation of liquid wastes was apparent in these photographs. IEPA collected another set of samples from the monitoring wells in December, 1972. Analytical data for these samples are shown in Table R-3. The results indicate concentrations of iron, zinc, and phenol above the State's water Oil was also detected in wells MW-1 and MW-4. quality standards. Samples were also collected from waste ponds at Site R by IEPA in January, 1973 and analyzed for phenol. Two samples were collected from pits identified as crystallization ponds, and one sample was taken from a spent caustic pond. Results for the waste pond samples are shown in Table R-4. High concentrations of phenols were detected in all samples.

In 1973, IEPA sent notices to Sauget and Company and Monsanto

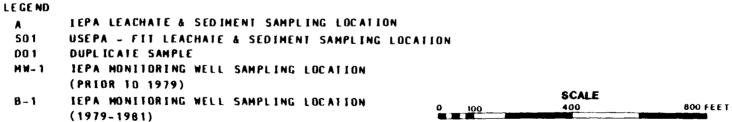


FIGURE R-1 STATE AND USEPA SAMPLING LOCATIONS AT SITE R.

TABLE R-2: ANALYSIS OF GROUND WATER SAMPLES FROM SITE R (COLLECTED AUGUST 22, 1968 BY THE ILLINOIS DEPARTMENT OF PUBLIC HEALTH)

SAMPLE LOCATIONS

PARAMETERS	MW-1	MW-3	MW-4	MW-5	MW-6
Total Solids (conductivity mmhos) Alkalinity (ppm) Phenol (ppb)	320	300	280	250	500
	172	148	156	124	248
	1220	25	20	15	1200

TABLE R-3: ANALYSIS OF GROUND WATER SAMPLES FROM SITE R (COLLECTED DECEMBER 5, 1972 By IEPA)

		SAMPLE LOCA	TIONS	
PARAMETERS	MW-1	MW-2	MW-3	MW-5
Calcium	50.2	147	36	49
Magnesium	15.8	36	18	18.5
Sodium	18.5	112	15	18.5
Potassium	3.6	6.7	4.2	3.5
Ammonia	1.5	2	0.65	0.92
Arsenic .				
Boron	0.1	0.7	0.1	0.1
Cadmium				
Chromium (Total)				
Copper		0.1		
Iron	2.4	28.2	1.4	8.5
Lead				0.02
Manganese	0.35	0.61	0.12	0.95
Mercury				
Nickel				
Zinc	0.40	1.42	0.21	2.05
Alkalinity	180	430	145	185
Chloride	22	225	22	22
Fluoride	0.2	0.2	0.2	2
Nitrate	0.1	0.3	0.1	0.1
Phosphate	0.003	0.21	0.05	0.34
Sulfate	16	12	29	32
Conductivity (mmhos)	445	1400	390	470
Phenols	0.088	0.2	0.007	0.014
011	I	0	I	0
Hardness	200	530	170	200
COD	46	135	3	88

NOTE: All results in ppm.

Blanks indicate below detection limits.

TABLE R-4:

ANALYSIS OF SURFACE WATER SAMPLES FROM WASTE PONDS AT

SITE R (COLLECTED JANUARY 18, 1973 BY IEPA)

SAMPLE LOCATIONS

		31111 CE CO0711 10113	
PARAMETER	CRYSTALLIZATION POND 221	CRYSTALLIZATION POND 270	SPENT CAUSTIC POND
Phenol	2800	50,000	2,000

NOTE: Results in mg/1 (ppm).

outlining violations of the Environmental Protection Act at Site R. Violations noted included inadequate segregation of wastes, open dumping of chemical wastes, and operation of a disposal facility without the necessary permits. In addition, it was noted that the cinders being used as cover material was not in accordance with the Rules and Regulations set forth by the Illinois Pollution Control Board. These violations were reiterated several times in 1973 and 1974.

The monitoring wells at Site R were sampled annually between the years 1973 and 1976. In addition to the monitoring wells on site, a Monsanto production well (Ranney Well), located in the northwest corner, was also sampled. Results from these sampling efforts are summarized in Tables R-5 through R-8. Although specific pumping data for the Ranney Well could not be located, Illinois State Water Survey reports and file information suggests that pumpage of the well produced a significant cone of influence in the area. shows significant contamination in the Ranney Well, most notably with phenols and PCBs. COD, which is a non-specific indicator of organic contaminants, was also detected at much higher concentrations in the Ranney Well than in other wells sampled. Iron, mercury, and zinc exceeded water quality standards on one or more occasion during this time period. It should be noted that analysis of samples collected at Site R prior to 1976 was limited to inorganic parameters and Ground water samples collected in February, 1976 were analyzed for PCBs (Table R-8). The Ranney well was the only well to show a detectable concentration of PCBs (7.7 ppb).

IEPA monthly inspection reports from 1975 indicate a significant reduction in the volume of chemical waste disposal at Site R. Wastes were being shipped to other locations for disposal or were being incinerated at Monsanto's Krummrich Plant. Monsanto voluntarily ceased disposal operations at the site in 1977 and began closure proceedings. D'Appolonia Consulting Engineers, Inc. (D'Appolonia) was contracted by Monsanto to conduct a subsurface investigation of the site. Twenty soil borings were drilled and eight monitoring

TABLE R-5: ANALYSIS OF GROUNDWATER SAMPLES FROM SITE R (COLLECTED FEBRUARY 22, 1973 BY IEPA)

	 				
PARAMETERS	MW-1	MW-2	MW-4	MW-5	RANNEY WELL
Iron	6.8	11	0.8	6.6	1.9
Manganese	0.35	0.55	0.05	1.05	0.92
Mercury (ppb)	0.4			0.2	
Zinc	1.9	0.6		1.5	
Ammonia	1.6	2.6	0.7	1.3	0.98
Phenol (ppb)	150	80			7500
80D	31	48	1	1	85
COD	51	78	16	13	220

NOTE: All results in ppm unless noted otherwise. Blanks indicate below detection limits.

TABLE R-6: ANALYSIS OF GROUND WATER SAMPLES FROM SITE R (COLLECTED MAY 6, 1974 BY IEPA)

			<u> </u>	E E00/1/10/13		
PARAMETERS	MW-1	MW-2	MW-3	MW-4	MW-5	Ranney Wel
Arsenic	0.001	0.001	0.005		0.001	0.002
Barium	0.1	0.3	0.2	0.1	0.2	0.2
Boron	0.3	0.9	8.4	0.2	0.1	
Cadmium		0.02				
cop	44	990	21	14	17	340
Chloride	90	215	30	17	16	25
Cyanide		0.008				0.005
Iron	15	43.2	11.9	2.71	7.5	2.65
Lead	0.008	0.01		0.008	0.014	0.95
Manganese	0.69	1.4	1.1	0.2	0.9	0.95
Nitrate						0.4
011	4	7	1			5
PhenoIs	0.35	120	0.1	0.02	0.1	15
R.O.E.	720	1600	750	270	240	820
Selenium						
Sulfate	220	78	305	48	41	31

NOTE: All results in ppm.

Blanks indicate below detection limits.

TABLE R-7: ANALYSIS OF GROUND WATER SAMPLES FROM SITE R (COLLECTED OCTOBER 28, 1975 BY IEPA).

	SAPIREE EUGATIONS					
PARAMETERS	RANNEY WELL	MW-2	MW-4	MW-5		
Ammonia						
Arsenic	0.002		0.002			
Barium	0.1	0.1	0.1	0.2		
Вогол	0.7	0.9	0.5	0.2		
Cadmium						
COD	345	210	12	16		
Chloride	110	200	23	20		
Cyanide		0.02	0.01			
Iron	4.5	13.4	1.45	11		
Lead	0.02		0.01	0.04		
Manganese	1.3	0.2	0.1	0.7		
Nitrate		0.3	0.2	0.1		
011	3	6	2	3		
Phenol	19	1.1	0.025	0.013		
R.O.E.	300	920	230	200		
Selenium	0.02					
Sulfate	95	6	22	15		

NOTE: All results in mg/l, (ppm).
Blanks indicate not detected.

TABLE R-8: ANALYSIS OF GROUNDWATER SAMPLES FROM SITE R (COLLECTED FEBRUARY 17, 1976 BY IEPA)

PARAMETERS	MW-1	MW-2	MW-3	MW-4	MW-5	RANNEY WELL
Arsenic						0.001
Barium]			0.2	0.3	0.1
Boron	0.3	0.8	8	0.5	0.1	1.4
Cadmium						
COD	28	130	8	16	15	390
Chloride	60	410	65	35	35	250
Cyanide	0.01	0.01	0.01	0.01	0.01	0.01
Iron	5.1	19.5	4.3	0.7	7.1	4.6
Lead	0.01	0.02			0.02	
Manganese	0.27	0.27	0.1	0.1	0.85	1.45
Nitrate	0.8	0.1				0.3
Phenols	0.03	0.01				
ROE	370	890	260	220	260	900
Selenium						
Sulfate	110	20	100	44	36	180
PCBs (ppb)						7.7

NOTE: All results in mg/l (ppm) unless noted otherwise. Blanks indicate below detection limits.

wells were installed. The D'Appolonia study concluded that the landfill area consisted of 5 to 20 feet of flyash, cinders, silty clay, and unidentified waste. The landfill is underlain by alluvium, consisting of fine sands, silt, and clay ranging in thickness from 5 to 50 feet. Field permeability tests showed that alluvium is fairly permeable (1 x 10^{-3} cm/sec) suggesting that silty sand is the major component of the alluvium. This finding is supported by the evidence of vertical migration of contaminants to a depth of 65 feet, as suggested in the boring logs. Water levels were generally 25 to 30 feet below ground surface.

In May, 1978, Monsanto filed closure documents to IEPA detailing a closure plan for the site. In general, the plan consisted of specifications for the installation of a drainage system and clay cap, along with details for grading, seeding, and access restriction. The Helmkamp Construction Company was retained to implement the closure plan. An IEPA inspection report from October, 1979 indicated that closure operations at Site R were complete, including installation of a clay cap 3 to 6 feet in thickness. In February, 1980, Richard Sinise, an Environmental Control Engineer for Monsanto, filed an Affidavit of Closure for Site R.

IEPA personnel collected ground water samples from monitoring wells installed by D'Applonia in October, 1979 (Figure R-1). The samples were analyzed for inorganics and organic parameters reported by Monsanto to have been disposed of at the site. Analytical results for these samples are shown in Table R-9. Analysis showed the presence of several organic contaminants in the wells. Both shallow (25 to 35 feet) and deep (60 to 70 feet) wells were sampled, and chlorotoluene and phenol were found in all wells sampled. Well B-19S, located in the southeast portion of the site, also showed chlorophenol, dichlorobenzene, and diphenyl ether at concentrations ranging from 0.81 to 2.1 ppm. Iron, copper, and zinc exceeded water quality standards in several wells. Another set of samples was

TABLE R-9: ANALYSIS OF GROUNDWATER SAMPLES FROM SITE R (COLLECTED BY IEPA ON OCTOBER 12, 1979)

SAMPLE LOCATIONS

 						
PARAMETERS	B - 9S	B-9D	B-13D	8-155	B-17S	B-19S
Inorganics						
Arsenic	0.01	0.004	0.002	0.002	0.002	0.007
Cadmium	0.02		0.01			0.01
Chromium	0.03		0.04			0.03
Copper	1.2	0.32	0.87	0.14	0.42	1.6
Iron	290	100	130	5 6	110	230
Lead	0.2		0.3		0.1	0.2
Magnesium	31	10	27	83	11	28
Manganese	7.8	1	1.4	1.8	0.99	2.8
Nickel	0.6	0.2	1.9	0.1	0.1	0.2
Zinc	3.3	0.36	3	0.4	0.52	0.87
Organics						
Aliphatic hydrocarbons				*	*	*.
Chlorophenol	*	*				0.81
Chlorotoluene	70	40	10	0.34	11	18
Dichlorbenzene						1.6
Diphenylether					0.32	2.1
Phenol	21	56	10	14.3	41.5	22

NOTE: All results in ppm
Blanks indicate below detection limits

* Contaminants present, but not quantified

collected by the IEPA from the D'Appolonia monitoring wells in March, 1981. These samples were analyzed specifically for organic compounds. Analytical data for these samples are shown in Table R-10. Concentrations of organic contaminants were detected in all wells sampled. Chlorobenzene (130 to 3000 ppb) was detected in all wells, while biphenylamine, chlorophenol, dichlorobenzene, and dichlorophenol were seen in five or more wells.

In October, 1981, IEPA collected leachate and sediment samples at Site R from an area adjacent to the Mississippi River. Leachate and sediment samples were collected from three locations where leachate seeps were observed flowing from the landfill into the river. Analytical results for these samples are presented in Table R-11, and locations of the samples are shown in Figure R-1. The three water samples showed contamination with a wide variety of PCBs and chloroaniline were detected in all sediment compounds. samples. Other compounds detected in sediment samples included 2,4-dichlorophenoxy-acetic acid (2,4-D), chloronitrobenzene, dichloroaniline, chlorophenol, biphenyl-2-ol, and dichlorophenol. presence of 2.4-D and chlorinated phenols in these samples suggested that dioxin was also a potential contaminant at the site. The IEPA subsequently requested assistance from USEPA in securing a laboratory to perform dioxin analysis on leachate samples from Site R. November, 1981 a USEPA contractor (Ecology and Environment, Inc.) collected leachate and sediment samples at three locations adjacent to the river (Figure R-1). A total of eight samples plus three blanks were collected. Dioxin analysis was performed by the Brehm Laboratory at Wright State University. Monsanto obtained split samples and analyzed for chlorinated dibenzo-p-dioxins (CDDs), select organics, and metals. The USEPA samples were analyzed for tetra through octa CDDs and dibenzofurans (CDFs), select organics, and metals. Table R-12 provides an explanation and cross-reference for samples collected by USEPA and Monsanto.

Analytical results for CDDs and CDFs in the USEPA leachate samples

TABLE R-10: ORGANIC ANALYSIS OF GROUNDWATER SAMPLES FROM SITE R (COLLECTED BY IEPA ON MARCH 25, 1981)

SAMPLE LOCATIONS

PARAMETERS	B-1	B-6S	B-9S	B90	B11S	B-11D	B-150	B-17D	B-190
liphatic hydrocarbons					4,000				
Biphenylamine	1,800	250	•		15,000	1,100	1,300	860	660
Chlorobenzene	3,000	130	720	810	1,000	2,800	2,800	650	300
Chlorophenol	6,600	5,300	11,000	12,000	13,000	3,200	3,200		950
Chloronitrobenzene			2,500	1,500					
Dichlorobenzene	2,600				1,000	800	930	420	360
)ichlorophenol	1,100	700			•	630	2,900	670	
Trichlorophenol	•						-	1,200	

NOTE: All results in ug/l (ppb).
Blanks indicate below detection limit.

TABLE: R-11: ANALYSIS OF LEACHATE AND SEDIMENT SAMPLES FROM SITE R (COLLECTED OCTOBER 2, 1981 BY IEPA)

			SAMPL	E LOCATIONS		
PARAMETERS	SAMPLE A (WATER) DO22687	SAMPLE B (WATER) DO22688	SAMPLE C (WATER) DO22689	SOIL SAMPLE A	SOIL SAMPLE B 	SOIL SAMPLE C DO22692
PCB			2.6	48	150	230
Toluene	11	40	150			
Chlorobenzene	160	390	1,600			
Chloroaniline	24,000	22,000	38,000	1,700	1 9 0	6,900
Chioronitrobenzene	21,000	9,600	820		130	
2.4-0	16,000	17,000	7,800	53	(<5)	(<5)
2,4,5-T				(<5)	(<5)	(<5)
Dichloronitrobenzene	740	590	790			
Dichloroaniline	870	820	2,800			190
Chloronitroaniline	84	33				
Nitroaniline	100	23				
Chlorophenol	15,000	30,000	27,000			290
Phenol	22,000	17,000	12,000			
Methylphenol	570	220	12,000 110			
Dichlorophenol	32,000	7,200	2,100	40		
Nitrophenol	600	•	•			
Biphenyldial	1,700					
Aniline	550	120	35			
Methylbenzene	180	2,000	140			
Sucponantde						
4-methyl-2-pentanol	26					
2-methyl cyclopentanol	93					
Biphenyl 2-01	300	300	280			310
Benzenesulfonamide	76	630				
Dichlorobenzene		110	250			
Benzoic Acid/Derivatives	12,000	6,600	2,000			
Hydroxybenzoic Acid/						
Derivatives	12,000					
2.4-D Isomer	38,000	48,000	29,000			
2,4,5-T Isomer	10,000	12,000	6,500			
-1:1:				. 		

NOTE: All results in ppb.
Blanks indicate below detection limits.
() indicates values are unconfirmed.

TABLE R-12: COMPILATION OF LEACHATE AND SEDIMENT SAMPLES COLLECTED AT SITE R IN NOVEMBER, 1981

STATION NUMBER	USEPA SAMPLE NUMBERª	MONSANTO SAMPLE NUMBER	DESCRIPTION
- 1	S01	MO1	Leachate (5% Sediment)
1	DO1		Duplicate for SO1
1	SO 2	M02	Sediment
1	002		Duplicate for SO2
2	S03	MO3	Leachate (10% Sediment)
2	SO4	MO4	Sediment
3 3	\$05	M05	Leachate (10% Sediment
3	S06	M06	Sediment
B1 ank	\$07		City of Chicago tap water.
			Blank for low level analysis.
B1 ank	RO1		City of Chicago tap water.
			Blank for medium level analysis.
B1 ank	RO1		City of Chicago tap water.
	-		Extra blank for low level
			analysis.

NOTE: Monsanto did not split samples where no number is listed.
a - Samples collected by Ecology and Environment, Inc.

are shown in Table R-13. Tetra- and penta-CDDs and CDFS were not detected in any of the samples. However, higher chlorinated dioxins and furans (hexa through octa isomers) were detected in three of the five samples submitted for analysis. Concentrations of these compounds ranged from 4.5 to 2693 parts per trillion (ppt). The two remaining samples, SO7 and RO1, were water blanks, and showed no detectable CDDs or CDFs. Monsanto also analyzed samples MO1 through MO5 for CDDs, and results showed no detectable concentrations of these compounds.

Inorganic data for the leachate and sediment samples from Site R are shown in Tables R-14 and R-15. In general, the leachate samples did not show significant inorganic contamination, although concentrations of chromium, copper, boron and iron exceeded water quality standards in two or more samples. Cyanide was detected in several samples, but was also found in the blank. Therefore, the results for cyanide should be considered unreliable. Data for the sediment samples show more substantial evidence of contamination. Elevated levels of arsenic, chromium, copper, lead, and barium were found in several Identified organic compounds in leachate and sediment samples are listed in Table R-16. Phenol and chlorinated phenols were found in all but one sediment sample (MO2) at concentrations ranging from 0.2 to 300 ppb. Leachate samples showed elevated levels of several organic parameters, including chlorinated phenols, chlorinated benzenes, chloroanilines, and 2,4-D. As shown in Table R-16, there is a significant discrepancy in the Monsanto and USEPA data for the sediment samples. The values listed by Monsanto were consistently and substantially higher than USEPA values. This may be explained by the fact that USEPA's samples were initially analyzed as medium hazard samples. Because of the higher detection limits associated with this analysis, no contaminants were initially found. USEPA subsequently decided to rerun the samples at lower detection limits. It is possible that the increased holding time and handling of these samples were instrumental in the reduction of concentrations of contaminants found.

Site R was assessed using USEPAs Hazard Ranking System (HRS) model in

TABLE R-13: ANALYSIS OF TETRA THROUGH OCTACHLORINATED

DIBENZO-P-DIOXINS AND DIBENZOFURANS
IN LEACHATE SAMPLES FROM SITE R
(COLLECTED NOVEMBER 12, 1981 BY
ECOLOGY AND ENVIRONMENT, INC.)

PARAMETERS

SAMPLE LOCATIONS	TCDDs	TCDFs	PCDDs	PCDFs	HXCDDs	HXCDFs	HPCDDs	HPCDFs	OCDDs	OCDF s
S01 S03 S05 S07 (Blank) R01 (Blank)					4.5 6.3 5.8	6.3 10 6.3	86 181 152	74 182 112	323 675 2693	30 103 53

NOTE: All results in parts per trillion (ppb).

Blanks indicate below detection limits.

Analysis performed by Brehm Laboratory, Wright State University.

TABLE R-14: INORGANIC ANALYSIS OF LEACHATE SAMPLES FROM SITE R (COLLECTED NOVEMBER 12, 1981 BY ECOLOGY AND ENVIRONMENT, INC.)

				MITTEL LO	0711 20113			
PARAMETERS	S 01	MO1	D01	S 03	M03	S05	M05	RO1
Arsenic	0.034	0.02	0.031	0.016	0.025	0.029	0.065	
Mercury	0.0002		0.0002	0.0002	0.0014	0.0008		
Selenium	0.038		0.032	0.026		0.031		
Thallium					•			
Antimony								
Beryllium		0.008			0.005		0.008	
Cadmium		0.006			0.007		0.008	
Chromium	0.04	0.086	0.02	0.015	0.075	0.02	0.07	0.01
Copper		0.073			0.092		0.08	
Lead	0.005		0.008					
Nickel	0.04	0.155			0.124		0.144	
Silver						0.01		
Zinc	0.048	0.216	0.024	0.01	0.216	0.049	0.062	0.31
Aluminum		26.8			30.5		3.22	
Barium		0.5			0.5		0.36	
Boron	19.7	18	17.1	15.35	13.6	21.6	19.1	
Calcium	N/A	368	N/A	N/A	257	N/A	257	N/A
Cobalt		0.03			0.019		0.031	
Iron	0.06	25.5	0.06		30.8	0.63	27.4	
Magnesium	N/A	43.2	N/A	N/A	48.2	N/A	39.8	N/A
Manganese	0.0 2	6.27	0.32	1.99	2.1	5.4	8.82	0.03
Molybdenum	N/A	0.53	N/A	N/A	0.403	N/A	0.439	N/A
Phosphorus	N/A	0.9	N/A	N/A	0.907	N/A	2.06	N/A
Sodium	N/A	40.4	N/A	N/A	41.8	N/A	44.2	N/A
Tin				_		0.02	1.4	
Vanadium		0.18			0.138		0.17	
Cyanide	0.071	N/A	0.057	N/A	N/A	N/A	N/A	0.13

NOTE: All Results in ppm.

Blanks indicate below detection limits.

N/A - Parameter not analyzed.

RO1 is a water blank.

TABLE R-15: INORGANIC ANALYSIS OF SEDIMENT SAMPLES FROM SITE R (COLLECTED NOVEMBER 12, 1981 BY ECOLOGY AND ENVIRONMENT, INC.)

			30	MPLE LOCAT	10113		
PARAMETERS	S 02	S 03	M02	S 04	MO4	S0 6	M06
Arsenic	1.1	2.9	5.3	1.25	9.6	1.8	8.2
Mercury							
Selenium	1.1	1.8		1.5		1.6	
Thallium							
Antimony				4.0			
Beryllium			0.412		0.489		1.08
Cadmium			0.747	0.61	1.04		2.49
Chromium			10.7		10.4		28.7
Copper			7.17		7.8 9		25.5
Lead	2.4	2.9		2.45		1.7	
Nickel			17.4		18.6		33.8
Zinc	9.5	10	29.5	6.8	36.3	9.2	69.4
Aluminum	150	190	3870	155	4380	170	13,900
Barium			75.4		130	20	7.79
Boron		25 -	53	17	28.7	26	30.3
Calcium	N/A	N/A	3660	N/A	4010	N/A	6590
Cobalt			4.7		4.8		9.45
Iron	580	660	5870	425	8660	580	12,600
Magnesium	N/A	N/A	1780	N/A	2090	N/A	4080
Manganese	76	46	79.7	42	119	47	273
Molybdenum	N/A	N/A	10.6	N/A	12.5	N/A	22.4
Phosphorus	N/A	N/A	154	N/A	270	N/A	366
Sodium	N/A	N/A	1840	N/A	1270	N/A	4720
Tin							
Vanadium			14.4		17		43.9
Cyanide	28	13	N/A	6.8	N/A	90	N/A

NOTE: All results in ppm.
Blanks indicate below detection limit.

N/A - Parameter not analyzed.

TABLE R-16: IDENTIFIED ORGANIC COMPOUNDS IN LEACHATE
AND SEDIMENT SAMPLES FROM SITE R
(COLLECTED NOVEMBER 12, 1981 BY ECOLOGY AND ENVIRONMENT, INC.)

		LEACHATE		1			SEDIMENT		
PARAMETERS	MO1	MO3	MO5	S02	M02	S04	MO4	S06	M06
2-Chlorophenol	340	100		0.26		0.2	200	0.4	
2,4-Dichlorophenol	100			i		0.42		0.56	
Phenol	130					0.5	300	0.42	300
2,4,6-Trichlorophenol								0.32	
1,4-Dichlorobenzene	30				200		400		600
1,2-Dichlorobenzene	20								
Bis(2 ethylhexyl) Phthalate					400		300		400
Chlorobenzene	160	30							
Aniline	60	40	25						
Chloroanilines	8000	4000	600	1					
Dichloroanilines	100	40		1					200
Chloronitrobenzenes	3000	80							
2,4-D	332	100							
PCBs			0.008	l .	0.014		0.034		0.19

NOTE: All results in parts per billion (ppb). Blanks indicate below detection limit.

July, 1982 by Ecology & Environment, Inc. The final migration score assigned to the site was 7.23, which included observed releases for both the ground water and surface water routes. Route scores for ground water and surface water were 6.12 and 10.91 respectively. The air route was assigned a zero score because an observed release had not been documented. The reason for the relatively low final score for Site R is the lack of a target population, which is a major factor in the HRS model. The source of potable water in the area is an intake in the Mississippi River, located approximately 2.5 miles upstream from the site. The upstream location of the intake excludes it from being used in the model.

In 1982, the Illinois Attorney General's office filed suit (Complaint Number 82-CH-185) against Monsanto outlining several apparent violations of the Illinois Environmental Protection Act. For the most part, the Complaint was directed at alleged water pollution caused by the defendant. Relief requested by the Attorney General included civil penalties and issuance of an injunction directing the defendant to immediately prevent seepage of wastes into the Mississippi River, and to remove all such wastes from the property. To date, no information has been located concerning a determination in this case. The Attorney General's office is presently engaged in an ongoing suit against Monsanto in an attempt to have all wastes removed from the site.

USEPA file information suggests that fish studies have been conducted in the Mississippi River in the vicinity of Site R. The Food and Drug Administration (FDA) in Edwardsville, Illinois has found unacceptable concentrations of PCBs in fish collected downstream of Site R. A detailed study was proposed for the area in the immediate vicinity of the site, however, attempts to obtain data from this study have been unsuccessful to date. It is not known if this study was to have included an assessment of the Sauget Treatment Plant effluent, which is discharged immediately northwest of Site R.

In 1982, USEPA developed a comparative analysis of chemicals

detected in monitoring wells and leachate samples from Site R as they relate to wastes reported by Monsanto to have been disposed of at the site. Also included in the analysis were chemicals reported as being manufactured at Monsanto's Krummrich Plant, as documented in the 1977 chemical inventory developed as a result of the Toxic Substances Control Act (TSCA) and the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The analysis revealed a high degree of association or correlation between chemicals detected in the sample, and those reported to have been disposed of or manufactured by Monsanto. A summary of data from this USEPA analysis report is presented in Table R-17.

In 1984, Monsanto contracted Geraghty and Miller, Inc. to perform a detailed hydrogeologic investigation in the Sauget area. Data from this study, which included the installation of approximately 60 monitoring wells, have not been made available.

Data Assessment and Recommendations

A great deal of data has been developed to date for Site R. Organic contaminants have been detected in both shallow and deep monitoring wells on site, as well as in leachate seeps leaving the site. Evidence of contamination has been observed to a depth of approximately 60 feet in soil borings. A substantial listing of the types and quantities of chemical wastes disposed of at the site was submitted to IEPA by Monsanto. In view of this information the only significant data gaps are: (1) specific delineation of contaminant boundaries, and (2) determination of the presence or absence of air emissions from the site. Because of the permeable nature of the subsurface soils and the characteristics of the wastes present at the site, it is likely that extensive migration of contaminants has occurred.

The present scope of work for the Dead Creek Project includes installation and sampling of monitoring wells at Site R. Ambient air monitoring will also be conducted to determine to what extent, if any, off-gassing of organic contaminants is occurring. Every effort

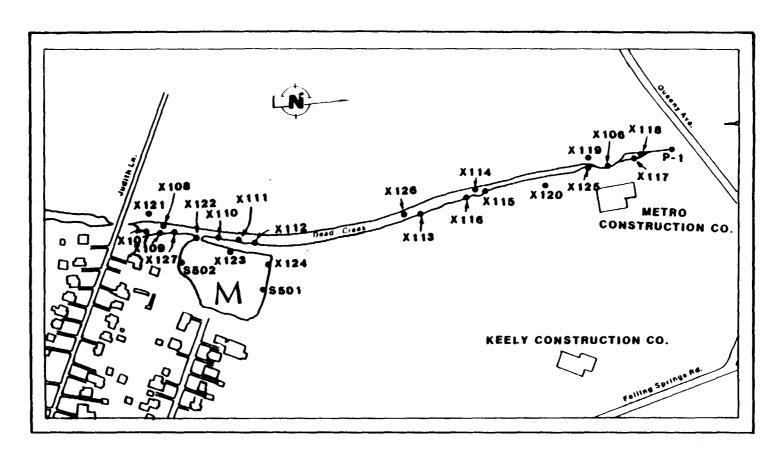
TABLE R-17: COMPARATIVE ANALYSIS OF CHEMICALS DETECTED
IN SAMPLES AT SITE R AND THOSE REPORTED
TO HAVE BEEN DISPOSED OR MANUFACTURED BY MONSANTO

		/SEDIMENT		GROUNDWATER ANALYSIS	REPORTED DISPOSAL	MANUFACTURED
COMPOUNDS	TEPA	HONSANTO	USEPA	TEPA	OTHAZHOM	MONSANTO
PCBs	X	<u> </u>				X
Chlorobenzene	X	X) x)	X	X
Dichlorobenzene	X	. X		l x [l x
Chloroaniline	X	X		1	X	l x
Chloronitrobenzene	, x	X		1 x 1	X	l x
Dichloronitrobenzene	X			1		ł
Chlorophenol	X	X	X	1 ×	<u> </u>	1x
Dichlorophenol	i x	X	X	1 x 1	x	! x
2,4-D/isomers	X	X		1) x
2,4,5,-T/Isomers	X			1		X
Aniline	X	X]]		
Dichloroaniline	X			1 1	X	Į
Chloronitroaniline	X				X	X
Nitroaniline	X			, ,	X	l x
Phenol	X	X	X	, x	X	
Nitrophenol	X			1		1
Methylphenol	X]
Diphenyldiol	X			1 1		1
Benzoic Acid/Derivatives	X				X	X
4-methyl-2-pentanol	X			l i	X	1
2-methylcyclopentanol	X			1 1	X	1
Benzene Sulfonamide	l x			1	X	
Chlorataluene	X			1		l x
Dioxins/Dibenzofurans	l		X	1	X (By Product)	X (By Produc

should be made by th IEPA to obtain data on, and gain access to, the Monsanto wells installed by Geraghty and Miller. Access to these wells would likely eliminate the need for, or at least affect the location of, the monitoring wells to be installed during the field investigation of Site R. Pending the results of ground water sampling, a more specific approach to delineating the extent of contamination could be proposed. Samples should initially be collected from a minimum of 8 wells on Site R, and hydraulic conductivity tests should be run on a minimum of 2 deep and 2 shallow wells. Possibilities for identifying plume characteristics include conducting electromagenetic surveys (including off site areas), and soil gas monitoring. In any event, the lateral and vertical extent of contaminantion must be addressed prior to design of remedial options.

Site Description

Creek Sector B (CS-B) includes the portion of Dead Creek lying between Queeny Avenue and Judith Lane in Sauget, Illinois. Three other sites in the Dead Creek Project are located adjacent to CS-B. These include Site G to the northwest, Site L to the northeast, and Site M to the southeast. All of these sites have been identified at one time or another as possible sources of pollution in CS-B. Presently, CS-B and Site M are enclosed by a chain link fence which was installed by the USEPA in 1982. The banks of the creek are heavily vegetated, and debris is scattered throughout the northern one-half of CS-B. Culverts at Queeny Avenue and Judith Lane have been blocked in order to prevent any release of contaminants to the remainder of the creek, although the adequacy of these blocks has been guestioned several times. Water levels in the creek vary substantially depending on rainfall, and during extended periods of no precipitation, the creek becomes a dry ditch.


Site History and Previous Investigations

The IEPA initially became aware of environmental problems at CS-8 in May, 1980 when several complaints were received concerning smouldering and fires observed the creek bed. In August, 1980, a local resident's dog died, apparently of chemical burns resulting from contact with materials in the ditch. Following this incident, the IEPA conducted preliminary sampling to determine the cause of these problems in CS-B. Chemical analysis of these samples indicated high levels of PCBs, phosphorus, and heavy metals, and the IEPA subsequently authorized the installation of fencing in order to prevent public access to the creek. —In September 1980, the Illinois Department of Transportation (IDOT) completed installation of 7000 feet of snow fence with warning signs around CS-B and Site M. The IEPA subsequently performed a preliminary hydrogeological investigation in the area in an attempt to identify the sources of pollution

in Dead Creek. The results of this investigation are documented in the St. John Report. The snow fence was later replaced with a chain link and barbed wire fence. The installation of this fence was authorized by the USEPA, and was completed in October, 1982.

Prior to the IEPA investigation in 1980, the City of Cahokia Health Department received complaints from area residents concerning discharges from Cerro Copper Product (Cerro) entering CS-B. In 1975. IEPA visited the site in order to determine if these discharges were Investigators observed discoloration in the creek and along the banks similar to what was later observed in the holding ponds at Cerro. One water sample was collected by IEPA from the creek immediately south of Queeny Avenue. Analysis of this sample indicated the presence of copper (0.3 ppm), iron (3.2 ppm), and mercury (0.1 ppb). The culvert under Queeny Avenue was sealed sometime in the early 1970's by Cerro Copper and the Monsanto Chemical Company for the purpose of restricting flow from the holding ponds at Cerro (Creek Sector A). The holding ponds were also regraded to the north to direct their flow to an interceptor discharging to the Sauget Wastewater Treatment Plant. investigators concluded that flow through the blocked culvert had occurred, although the direction of flow could not be determined because no flow was evident at the time of the inspection.

The IEPA hydrogeological study, conducted in 1980, included collecting 20 surface sediment samples for analysis from CS-B (Figure B-1). Analyses of samples from the northern portion of CS-B are presented in Table B-1. Samples x106, x119, x120, x125, and x126 showed PCBs in concentrations ranging from 1.1 to 10,000 parts per million (ppm). Sample x125, taken adjacent to the former Waggoner Company operation, contained additional organic contaminants, including alkylbenzenes (370 ppm), dichlorobenzene (660 ppm), trichlorobenzene (78 ppm), dichlorophenol (170 ppm), and hydrocarbons (21,000 ppm). These contaminants were not detected in other surface sediment samples in the northern portion of CS-B during this

LEGEND

X106 SEDIMENT SAMPLING LOCATION

SCALE

SSO2 SURFACE WATER SAMPLING LOCATION

O 150 600 900 FEET

P-1 SUBSURFACE SOIL SAMPLING LOCATION

FIGURE B-1
IEPA SAMPLING LOCATIONS AT CREEK SECTOR B AND SITE M

TABLE B-1: ANALYSIS OF SOIL SAMPLES IN THE NORTHERN PORTION OF CREEK SECTOR B (COLLECTED BY LEPA 9-8-80 THROUGH 10-25-80)

	·····				SAMPLE L	OCATIONS.	·				
PARAMETERS	x106	x113	x114	x115	×116	x117	x118	x119	×120	x125	×126
Aluminum		10,000	6,400	9,000	9,000	1,300	1,200				
Arsenic	l	300	23	18	9	16	15				
Bar1um		2,400	1,600	3,400	300	400	1,600	510	1,200	2,500	5,000
Beryl 1um		-	-	-	•	•	-	1	1	•	
Boron	1	-	-	-	•	-	6	-	-	-	7
Cadm 1 um]	400	•	120	•	-	•	7	3	6	7
Calcium		11,000	14,000	11,000	5,000	1,600	6,000	7,300	72,000	6,900	19,000
Chromium	1	250	400	120	130	-	-	36	38	50	100
Cobalt		100	-	40	•	-	-	9	10	9	50
Copper	i	3,800	4,800	22,000	270	160	1,000	100	150	1,000	44,80
Tron		365,000	55,000	40,000	12,000	2,400	4,300	17,500	16,200	7,000	107,00
Lead	1	3,600	2,000	3,200	80	-	100	43	60	260	2,00
Magnes 1 um		4,000	2,800	5,000	2,600	1,200	1,000	4,500	4,300	380	3,70
Manganese	1	120	130	150	60	40	50	260	350	45	28
Mercury	1	30	1.7	4	0.2	2	2				
Nickel	1	2,500	1,700	2,400	140	-	-	-	80	1 30	3,00
Phosphorus	1									2,000	8,90
Potassium	•	1,400	1,300	1,500	2,300	850	1,200	1,800	1,200	770	86
Silver			-		<u>-</u>	50				-	10
Sodium		2,800	700	1,100	360	150_	180	110	225	80	1,40
Strontium		180	140	200	40	-	-	47	140	50	30
Van ad 1 um	Į	.		150	.	-	-	27	21	13	8:
Zinc		61,000	20,000	71,000	2,500	-	300	2,000	700	1,500	62,00
PCBs	5,200							1.1	80	10,000	350
Alkylbenzenes	-							-	-	370	
Dichlorobenzene	-							-	-	660	
Dichlorophenol] -							-	-	170	
Hydrocarbons	-							-	-	21,000	
Naphthalenes	1 -							-	-	650	
Trichlorobenzene	1 -							-	-	78	

NOTE: All results in ppm

Blank indicate parameter not analyzed
- Indicates below detection limits

investigation. In general, inorganic analysis of these samples indicated high levels of several metals in comparison with background conditions (Table B-3, sample x121).

Subsurface soil samples were also collected by IEPA from one location in the northern portion of CS-B during the 1980 investigation. Analyses of samples from boring P-1 are included in Table B-2. Results indicated the presence of PCBs to a depth of seven feet, and other organic contaminants to a depth of three feet. PCB concentrations ranged from 9,200 ppm near the surface to 53 ppm at depths greater than 4 feet and up to 7 feet. Other organic contaminants were detected at concentrations ranging from 12,000 ppm near the surface to 240 ppm at 2.5 feet. These results indicate non-uniform contaminant deposition in the northern portion of CS-B, which is common in riverine systems. The above data indicate that historical release(s) of contaminants to the northern portion of CS-B did occur. However, the horizontal and vertical extent of the resulting contamination has not been fully defined.

Analyses of sediment samples from the southern portion of CS-B are summarized in Table B-3. Sample x121 was taken from soil outside the creek bed to establish background conditions. Samples x107, x122, and x127 contained PCBs at concentrations ranging from 73 to 540 ppm. Sample x122 also showed diclorobenzene (0.35 ppm). This was the only organic contaminant other than PCBs detected in samples from the southern portion of CS-B. Several metals, including arsenic, cadmium, chromium, copper, lead, and zinc, were detected at levels significantly above background concentrations in all samples. However, the metal concentrations were comparable to concentrations detected in samples of sediment taken in the northern portion of CS-B. All of the samples were collected from the creek bed adjacent to, or downstream from Site M, which is an old sand pit excavated by the H.H. Hall Construction Company in approximately 1950. Hazardous materials were not reported to have been disposed of at Site M.

In October, 1980 IEPA and Monsanto Chemical Company cooperatively

TABLE B-2: ANALYSIS OF SUBSURFACE SOIL SAMPLES AT BORING LOCATION P-1 IN CREEK SECTOR B. (COLLECTED BY IEPA 9-8-80)

SAMPLE DEPTH

PARAMETERS	0'-1'	1'-2'	2'-3'	3'-4'	4'-5'	5'-6	6'-7'
Biphenyl	6,000	9,000	1,100				
Chloronitrobenzene	200	240	•				
Dichlorobenzene	12,000	8,900	240				
PCBs	9,200	2,600	92B-6	240	53	53	54
Trichlorobenzene	380	3,700	590				
Xylene	540	250					

NOTE: All results in ppm
Blanks indicate below detection limits

TABLE B-3: ANALYSIS OF SOIL SAMPLES IN THE SOUTHERN PORTION OF CREEK SECTOR B (COLLECTED BY IEPA 9-8-80 THROUGH 10-25-80)

PARAMETERS	x107	x108	x109	x110	x111	x112	x121	x122	x127
Aluminum		8,000	9,100	7,000	8,000	6,600			
Arsenic	6,000	44	25	67	80	50			
Barium	4,800	3,800	1,600	4,300	1,800	8,000	230	5,500	2,500
Berylium	_	-	-	-	-	-	-	2	
Boron	~	-	-	-	-	~	-	-	
Cadmium	70	-	200	40	100	100	1	35	5
Calcium	11,000	10,000	24,000	16,000	13,000	30,000	11,000	15,000	8,00
Chromium	360	300		140	50	50	-	50	34
Cobalt	30	30	20	-	-	30	9	15	3
Copper	32,000	31,000	7,700	22,000	15,000	41,000	100	21,900	28,00
Iron	70,000	58,000	75,000	67,000	68,000	52,000	16,500	50,000	63,00
Lead	24,000	2,000	1,700	2,000	2,000	5,100	_	1,700	1,70
Magnesium	2,900	3,900	3,600	4,100	4,000	4,000	5,900	3,800	2,70
Manganese	150	150	300	200	160	300	370	190	15
Mercury	-	1.7	3	3.3	3.2	6	-	-	
Nickel	3,500	3,000	900	1,900	2,000	2,700	120	1,700	
Phosphorus	7,040	-	-	•	-	-	-	-	4,70
Potassium	1,200	1,500	1,700	1,300	1,600	1,200	1,500	960	1,00
Silver	40	-	-	-	-	-	-	30	4
Sodium	1,700	900	900	700	1,000	1,600	80	630	70
Strontium	180	200	130	160	160	430	32	190	13
Vanadium	60	-	-	70	100	_	25	45	4
Zinc	25,000	22,000	27,000	25,000	47,000	52,000	230	19,900	28,00
PCBs	120	-	-	-	-	-	-	540	7
Dichlorobenzene	-	-	-	-	-	-	_	0.35	

All results in ppm NOTE:

Blanks indicate that parameter not analyzed - Indicates parameter is below detector limit

collected three sediment samples from CS-B in order to confirm results of earlier sampling done by IEPA. SD-1 was collected from the creek bed 40 yards-south of Queeny Avenue. This location is adjacent to the former Waggoner Company building and also near an old outfall (effluent pipe) from the Midwest Rubber Company. SD-2 and SD-3 were collected approximately 220 yards south of SD-1. in the central portion of CS-B. Results of these samples, including a blank soil sample collected from the Missouri Bottoms in St. Charles, Mo., are presented in Tables 8-4 and 8-5. PCBs (45-13.000 ppm) were found in all three samples from CS-B, as were several chlorinated benzenes. Chlorinated phenols and phosphate ester were detected in samples SD-1 and SD-3, but were not found in SD-2. analysis of these samples for inorganic parameters detected generally higher levels of inorganic parameters in SD-2 and SD-3 than those for SD-1 and the soil blank. These results clearly indicate differential contamination in CS-B, with SD-1 showing high levels of PCBs and other organic compounds, whereas SD-2 and SD-3 contained higher levels of metals.

IEPA personnel also collected two sediment samples from CS-B in December, 1982, as part of an area-wide dioxin sampling effort managed by the USEPA which also included Site O. The first sample was collected along the east bank of the creek, approximately 80 yards south of Queeny Avenue. Previous sampling conducted by IEPA in this area had shown high concentrations of PCBs. The second sample was collected along the west bank of the creek, approximately 50 yards south of Queeny Avenue. Both samples were analyzed specifically for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by a USEPA contract laboratory. The first sample showed a quantified level (0.54 ppb) of TCDD, and the second sample was below the detection limit.

IEPAs Preliminary Hydrogeological Investigation of Dead Creek in 1980 was conducted for the purpose of determining possible sources of pollution observed in CS-B. The study included installation and

TABLE B-4: ORGANIC ANALYSIS OF SEDIMENT

SAMPLES FROM DEAD CREEK, SECTOR B (SPLIT SAMPLES-IEPA AND MONSANTO

COLLECTED 10-2-80)

SAMPLE LOCATIONS

		SAMP	LE LOCATION	S
PARAMETERS	SD-1	SD-2	SD-3	Blank*
CHLOROBENZENES:				
Monochlorobenzene	(0.9)		(0.3)	
p-Dichlorobenzene	`370	(0.3)	(0.4)	
o-Dichlorobenzene	80	(0.6)	1	
Trichlorobenzenes	85	1.6	(0.7)	
Tetrachlorobenzenes	6.1	2.4	(0.4)	
Pentacesorobenzene				
Hexachlorobenzene		1.2		
Nitrochlorobenzenes	120			
CHLOROPHENOLS:				
o-Chlorophenol	3.7			
p-Chlorophenol	6.6		(0.9)	
2.4-Dichlorophenol	1.2			
Pentachlorophenol	130		1.8	
PHOSPHATE ESTERS:			•	
Dibutylphenyl Phosphate	330		(0.8)	
Butyldiphenyl Phosphate			(0.8)	
Triphenyl Phosphate	2600		, ,	
2-Ethylhexyldiphenyl			2.2	
Phosphate				
Isodecyldiphenyl Phosphate				
T-Butylphenyldiphenyl				
Phosphate	28			
Di-t-butylphenyldiphenyl				
Phosphate				
Nonylphenyl Diphenyl Phosphate	2.7			
Cumylphenyldiphenl Phosphate	3.7			
PCBs (Cl ₂ to Cl ₆ Homologs)	13,000	240	45	

NOTE: All values in ppm

*Soil blank collected from Missouri Bottoms, St. Charles, Mo.
Blanks indicate below detection limits
() Semi-quantitative values

TABLE B-5: INORGANIC ANALYSIS OF SEDIMENT SAMPLES FROM DEAD CREEK, SECTOR B
(SPLIT SAMPLES - IEPA AND MONSANTO COLLECTED 10-2-80)

		SAMPLE LO	JCAT TONS	
PARAMETERS	SD-1	SD-2	SD-3	Blank*
Aluminum	1,400	5,100	5,300	5,600
Antimony	13	240	160	29
Arsenic	210	40	55	5
Barium	770	1,200	1,300	130
Beryllium	-	, <u> </u>	-	•
Boron	28	160	100	27
Cadmium	5.1	60	55	3.9
Calcium	8,500	9,200	6,200	4,600
Chromium	25	110	240	19
Cobalt	15	180	120	33
Copper	460	28,000	18,000	19
Iron	4,700	53,000	30,000	9,900
Lead	180	2,000	1,600	50
Magnesium	460	2,200	2,000	2,300
Manganese	29	170	110	510
Molybdenum	6.1	92	68	11
Nickel	110	2,000	1,700	39
Phosphorus	2,500	13,000	9,400	610
Silicon	73	150	89	110
Silver	•	42	29	-
Sodium	400	540	410	320
Strontium	35	230	110	17
Tin	18	260	320	18
Titanium	32	110	80	37
Vanadium	34	140	130	130
Zinc	280	32,000	18,000	56

NOTE: All values in ppm

* Soil blank collected from Missouri Bottoms, St. Charles, MO.

- Indicates below detection limits.

sampling of 12 monitoring wells in addition to the 1980 soil/sediment sampling described above. Residential wells were also sampled to determine ground water quality in the area. Locations of IEPA monitoring wells and residential well samples are shown in Figure B-2. All IEPA wells were screened in the Henry Formation sands, with screened interval elevations ranging between 366 and 402 feet Mean Sea Level. The hydraulic gradient in the vicinity of CS-B is very flat, with ground water flow generally to the west toward the Mississippi River.

Analytical data for three sets of samples from the IEPA monitoring wells, corresponding to three sampling events in 1980 and 1981, are presented in Tables 8-6, B-7, and 8-8. Well G108 can be considered a background well due to its location upgradient from the known disposal areas around CS-B. Organic contaminants were consistently found in Wells G107 and G112. These wells are in downgradient monitoring positions for sites G and I respectively. Certain organic contaminants were detected in Wells G102, G109 and G110 during the initial sample event, but these wells did not show any of the organics in subsequent samples. Well G102 is located immediately west of the northern portion of CS-B, and near the southeast corner of Site G. Well G109 is located approximately 150 feet west of the former Waggoner surface impoundment (Site L). Well G110 is located downgradient of Site H. PCBs were detected at one time or another in Wells G101. G102. G104. G106. G107. G110. and G112. Of these, only G101 and G102 showed PCBs in all three sets of samples.

Inorganic analyses of samples from the IEPA monitoring wells indicate several parameters at concentrations above background (G108) and water quality standards. Standards for iron, manganese, and phosphorus were exceeded in samples from the background well. Barium, cadmium and lead were detected at concentrations exceeding standards in one or more well(s). In general, wells G109, G110, and G112 showed the most significant inorganic contamination. When compared with data for other wells, G109 contained very high concentrations of arsenic, copper, nickel, and zinc. The pH for G109

FIGURE 8-2
LOCATIONS OF IEPA MONITORING WELLS AND RESIDENTIAL
WELLS SAMPLED IN THE VICINITY OF DEAD CREEK

TABLE 8-6: ANALYSIS OF GROUNDWATER SAMPLES FROM THE IEPA MONITORING WELLS (COLLECTED 10-23-80)

	· · · · · · · · · · · · · · · · · · ·		·		SAMPL	E LOCATIO	DNS					
PARAMETERS	6101	G102	6103	G104	6105	G106	6107	G108	G109	G110	6111	G112
Alkalinity	362	410	336	406	271	387	552	375	287	210	302	599
Ammon i a	0.3	1.0	1.7	0.4	0.9	2.9	0.5	0.3	4.5	1.2	0.1	1.5
Arsenic	0.023	0.023	0.043	0.049	0.067	0.16	0.043	0.008	0.055	0.053	0.008	0.019
Barium	1.3	0.8	2.9	2.2	2.0	0.6	2.1	0.3	0.2	0.5	0.2	0.5
Boron	0.5	0.4	0.5	0.6	0.4	0.5	0.5	0.4	0.4	0.5	0.5	5.6
Cadmium	0.0	0.0	0.03	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.06
Calcium	180	210	210	210	340	185	500	140	380	500	110	242
800	237	160	244	206	473	115	1070	298	275	780	79	162
Chloride	48	103	58	52	65	109	132	79	69	61	32	363
Chromium (Total)	0.04	0.02	0.09	0.04	0.12	0.01	0.07	0.0	0.0	0.38	0.0	0.01
Chromium (+6)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Copper	0.46	0.13	1.1	0.31	0.73	0.44	0.68	0.04	0.13	2.3	0.04	1.2
Cyanide												0.0
Fluoride	0.4	0.7	0.7	0.3	1.0	0.7	0.7	0.3	1.2	0.8	0.3	0.5
Hardness	501	884	549	630	528	637	777	496	1664	2/9	419	1080
Iron	51.0	30.5	86	90	18	62	13	4.1	39.0	340	5	18
Lead	0.10	0.15	0.26	0.2	0.31	0.0	0.27	0.0	0.0	7.3	0.07	0.44
Magnesium	0.09	90	79	72	100	49	205	24	100	209	24	82.5
Manganese	5.1	3.8	4.2	3.4	4.2	1.9	9.8	0.98	4.5	8.0	1.1	3.9
Mercury	0.0	0.0	0.0002	0.0	0.0	0.0	0.0	0.0001	0.0	0.0	0.0	0.0001
Nickel	0.1	0.1	0.9	0.1	0.8	0.1	0.3	0.0	0.5	1.9	0.0	0.3
Nitrate-Nitrite	0.1	0.1	0.1	0.4	0.0	0.1	0.1	1.1	0.0	0.4	0.5	0.0
pH	6.6	6.6	6.5	6.6	6.6	6.5	6.4	6.6	6.3	6.7	7.0	6.4
Phenolics	0.0	.01	0.0	0.005	0.0	0.065	2.5	0.01	0.45	0.015	0.0	0.875
Phosphorus	2.9	1.2	3.3	2.7	6.0	1.8	9.4	.18	.72	16	. 24	.69
Potassium	10.6	13.1	13.4	12.3	22	7.7	15.2	13.7	14.9	29	4.9	58
R.O.E.	650	1230	765	790	824	1020	1230	704	2460	508	512	2130
Selenium	0.003	0.001	0.004	0.01	0.008	0.001	0.004	0.001	0.001	0.005	0.002	0.001
Silver	0.01	0.0	0.2	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.02	0.11
Sodium	24	60	40	29	57	96		40	40	53	24	260
S.C.	870	1500	1050	1080	1040	1340	1430	960	2470	720	490	
Sulfate	132	434	230	204	296	281	201	103	1348	93	104	518
2	0.6	0.4	6.2	0.3	3.7	0.1	0.8	0.0	0.1	8.0	0.0	7.8
PCB (ppb)	1.0	1.2	-	-	-	-	-	-	_	2.7	-	- !
Chlorophenol (ppb)	-	1200	-	-	-	-	630	-	19	-	-	- 1
Chlorobenzene (ppb)	-	•	-	-	-	-	19	•	-	_	-	100
Dichlorobenzene (ppb)	•	-		•		•	25		-			65
Dichlorophenol (ppb)	-	-	-	-	-	-	890	-	-	-	•	-
Cyclohexanone (ppb)	-	-	-	-	-	•	•	-	120	5.9	-	-
Chloroaniline (ppb)	-	-	_	_	-	_	-	_	-	•	_	3500

NOTE: All results in ppm unless otherwise noted.

Blanks indicate parameter not analyzed.

- indicates below detection limits.

TABLE 8-7: ANALYSIS OF GROUNDWATER SAMPLES FROM THE IEPA MONITORING WELLS (COLLECTED 1-28-81)

	·				SAM	PLE LOCAT	LONS					
PARAMETERS	6101	6102	6103	G104	G105	G106	G107	G108	G109	G110	6111	G112
Alkalinity	447	421	266	520	363	556	621	448	18	308	394	619
Ammonia	0.3	0.0	1.4	0.2	0.7	3.3	1.0	0.0	17	0.2	0.1	0.5
Arsenic	0.015	0.016	0.018	0.002	0.037	0.11	0.021	0.004	7.5	0.013	0.014	0.027
Bartum	0.9	1.2	0.9	0.3	1.8	1.0	3.2	0.5	0.2	1.0	0.7	0.5
Boron	0.3	0.4	0.4	0.7	0.4	0.5	0.5	0.2	0.8	0.2	0.6	0.9
Cadmium	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.00
Calcium	220.0	328.9	176.3	218.0	319.2	225.5	1169.5	205.5	466.7	169.4	181.4	198.3
C.O.D.	45	93	56	9	143	212	635	8	1315	37	28	47
Chloride	20	128	64	29	59	156	201	76	32	36	18	210
Chromium (Total)	0.02	0.02	0.02	0.00	0.03	0.00	0.09	0.00	0.04	0.02	0.02	0.00
Copper	0.59	0.79	0.36	0.14	0.43	0.29	0.97	0.00	94.1	0.11	0.04	0.28
Cyanide	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Hardness	554	1072	490	717	764	617	960	564	2144	447	530	486
Iron	30.4	16.5	20.8	1.4	60.8	67.5	172	0.3	198	19.1	10.1	18.9
Lead	0.17	0.08	0.00	0.00	0.07	0.00	0.32	0.00	0.00	0.00	0.00	0.00
Magnestum	48.2	78.0	46.3	49.1	73.6	49.1	288.1	34.3	184.4	43.5	37.9	54.0
Manganese	3.02	3.15	3.07	1.41	4.10	2.13	9.64	0.34	8.30	0.77	1.76	2.78
Mercury	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0004	0.0	0.0	0.0
Nickel	0.1	0.1	0.4	0.0	0.2	0.0	0.5	0.0	176	0.9	0.0	0.0
Nitrate-Nitrite	0.0	2.5	0.1	0.5	0.0	0.0	0.2	3.5	0.3	18	0.5	0.0
Hq	7.0	7.0	7.1	7.2	7.0	6.9	6.9	7.1	4.1	6.9	7.0	6.9
Phenolics	0.0	0.0	0.0	0.0	0.0	1.46	0.5	0.01	1.86	0.02	0.015	0.05
Phosphorus	0.91	0.88	0.41	0.06	3.6	2.1	10	0.03	3.7	1.0	0.51	0.53
Potassium	6.4	12	8.8	6.0	13	6.2	20	16	18	7.5	4.2	20
Selenium	0.002	0.002	0.002	0.002	0.003	0.002	0.011	0.004	0.006	0.016	0.002	0.0
Silver	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sodium	13	63	48	15	50	94	60	30	37	13	14	18
Sulfate	129	583	256	265	468	143	276	86	3371	57	153	212
Zinc	0.3	1.2	1.8	0.1	1.5	0.1	1.5	0.0	10.1	2.0	0.1	2.8
PCB (ppb)	0.22	3.9	•	0.3	-	-	0.4			-	-	-
Chlorobenzene (ppb)							6.3	_	-			2.5
Dichlorophenol (ppb)							560	-	-			
Chloroaniline (ppb)							90	-	-			2.1

NOTE: All results in ppm unless otherwise noted.
Blanks indicate parameter not analyzed.
Indicates below detection limits.

TABLE 8-8: ANALYSIS OF GROUNDWATER SAMPLES FROM THE IEPA MONITORING WELLS (COLLECTED 3-10-81 - 3-11-81)

CAMO		. ^	^ •	
SAMP	l R	ьu	K.A	

PARAMETERS	G101	6102	G103	G104	G105	G106	G107	G108	G109	G110	G111	G112
Alkalinity	463	464	319	568	393	394	657	464	58	331	387	400
Ammon 1 a	0.2	0.0	1.5	0.0	0.4	3.0	0.2	0.0	15	0.0	0.1	0.1
Arsenic	0.001	0.0	0.003	0.001	0.013	0.085	0.004	0.001	3.9	0.001	0.001	0.00
Barium	0.0	0.7	0.1	0.2	0.2	0.3	0.1	0.2	0.1	0.1	0.1	0.0
Boron	0.2	0.4	0.3	0.7 ·	0.3	0.5	0.5	0.2	0.5	0.1	0.4	3.4
Cadmium	0.0	0.01	0.01	0.0	0.0	0.0	0.01	0.0	0.07	1.1	0.0	0.17
Calcium	154	333	161	205	218	175	186	148	431	121	164	207
BOO [10	24	47	9	23	146	47	12	930	10 27	9	52
Chloride	16	124	46	28	57	150	235	51	24	27	16	133
Chromium (Total)	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0
Copper	0.04	0.06	0.08	0.02	0.02	0.01	0.01	0.03	67	0.02	0.07	0.48
Cyanide	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hardness	542	1062	620	839	796	675	1096	479	1651	424	485	789
Iron	0.3	0.3	1.6	0.0	9.4	4.9	2.4	0.0	1.4	0.0	0.2	0.5
Lead	0.0	0.0	0.0	0.0	0.0	0.06	0.0	0.0	0.0	0.0	0.07	0.0
Magnesium	34.2	77.9	41.9	56.8	47	44.8	44.8	22.3	138	28.7	31.8	72
Manganese	2.0	2.98	3.51	0.61	2.32	1.62	2.12	0.23	6.22	0.14	1.02	72
Hercury	-	-	-	-	-	-	0.0002	-	0.0003	-	-	-
Nickel	0.0	0.3	1.1	0.0	0.2	0.0	0.0	0.1	123	1.2	0.0	0.4
Nitrate-Nitrite	0.0	1.1	0.0	2.3	0.0	0.0	0.0	0.3	0.3	15	2.7	0.2
pH	6.9	6.8	6.8	6.9	6.8	6.7	6.7	7.0	4.6	6.6	6.8	6.6
Phenolics	0.0	0.0	0.005	0.0	0.0	0.0	1.7	0.1	1.4	0.0	0.0	0.00
Phosphorus	0.0	0.08	0.03	0.02	0.1	1.5	0.03	0.02	2.2	0.01	0.01	0.03
Potassium	4.0	10.8	10.4	5.9	8.9	5.7	2.8	18.2	6.4	6.3	2.9	40.2
Selenium	0.0	0.0	0.001	0.003	0.0	0.0	0.0	0.001	0.003	0.018	0.001	0.0
Silver	0.01	0.02	0.0	0.0	0.02	0.01	0.01	0.0	0.0	0.01	0.01	0.01
Sodium	11	64	65.6	17.4	51.2	92.6	39.2	25.2	12.1	14.2	15.5	96.6
Sulfate	118	617	471	303	466	146	313	55	2629	61	147	544
Zinc	0.1	0.8	2.8	0.1	0.3	0.1	0.1	0.3	6.3	1.6	0.1	11.8
PCB (ppb)	0.13	0.46	-	0.1	-	2.4	0.37	-	-	0.9	-	2.0

NOTE: All results in ppm unless otherwise noted.

Blanks indicate parameter not analyzed.

- indictes below detection limits.

was 6.3, 4.1, and 4.6 during the three sampling events. This indicates an unidentified source was releasing acid to the groundwater. Other wells which exhibited significant inorganic contamination include G102, G103, G105, and G106, all of which are located adjacent to CS-B along the west side. The data indicates non-uniform ground water contamination in the area, likely resulting from a variety of pollutional sources.

Private wells in the area have been periodically sampled by the IEPA and the USEPA. These wells are no longer used for potable water, but they are used for watering lawns and gardens. Locations of private well samples in the Dead Creek area are shown in Figure B-2. sampled five residential wells and collected one basement seepage sample near Creek Sectors B and C. Analytical data for these samples are presented in Table B-9. G504, located east of CS-B on Judith Lane, exceeded the standard for copper. The wells all showed water quality similar to that found in IEPA monitoring well G108. indicative of background conditions in the area. The basement seepage sample was collected from a residence on Walnut Street, just east of Site M. Analysis of this sample indicated higher levels of barium and copper, when compared with the private well samples. The seepage sample (x301) also showed a measurable level of chlordane, which was likely due to the application of commercial pesticides.

In March, 1982 the USEPA collected ground water samples from four private wells (SO1, SO2, SO3, and SO6) and two IEPA monitoring wells (SO4 and SO5). Ground water samples SO4 and SO5 correspond to IEPA monitoring wells G102 and G101 respectively. In addition, soil samples (SO7 S10, S11) were collected from three gardens where well water is used for watering. Soil Samples SO7, SO10, and SO11 were collected from gardens at the locations of ground water samples SO1, SO2, and SO3 respectively (see Figure B-2 for approximate sample locations). Water and soil blank samples, RO9 and R12 respectively, were also collected and analyzed. Analytical data for these samples are presented in Tables B-10 and B-11.

TABLE B-9: ANALYSIS OF RESIDENTIAL WELL AND SEEPAGE SAMPLES COLLECTED BY IEPA

SAMPLE DATES AND LOCATIONS

PARAMETERS	9/16/80 G501	9/16/80 G502	9/16/80 G503	9/23/80 G504	6/8/83 G505	1/5/83 x301
Arsenic	0.008	0.004	0.001		0.01	0.0.7
Barium	0.2	0.16	0.39	0.05	0.4	1.1
Boron	0.28	0.27	0.25	0.58	0.4	0.3
Cadmium	7123	0.2,	0.25		0. ,	0.5
Chromium						
Copper	0.02			0.06	0.01	0.03
Iron	4.6	19	17.7	0.73	26	31
Lead						0.03
Magnesium	33	39	36	30	35.3	54
Manganese	1.02	1.26	0.79	0.65	1.3	1.49
Mercury	5,,,,			0.0001	-10	
Nickel				0.02		0.1
Phosphorus				0.02	0.62	1.2
Potassium	6.6	5.7	4.5	6	6.2	6.4
Silver						
Sodium	21	24	12	26	15.2	19
Zinc	0.85		0.18	0.8		0.7
PCBs	-		0.10	V. U		0. /
	_	_	_	_		0.13
Chlordane (ppb)	-	-	-	=		0.13

NOTE: All results in ppm unless otherwise noted Blanks indicate below detection limit - Indicates parameter not analyzed

Sample x301 was collected from basement seepage

TABLE B-10: ANALYSIS OF IDENTIFIED ORGANICS IN GROUND WATER AND SOIL SAMPLES IN THE VICINITY OF CREEK SECTOR B (COLLECTED BY USEPA 3-3-82)

SAMP	LEI	LOÇA	LION

1				Ground	Water				So.	i 1	
PARAMETERS	S01 ·	S 02	S03	504	<u>\$05</u>	\$06	R09	S07	S010	S011	R012
bis(2-ethylhexyl) phthalate	64	62		·····	19	a				a	0.44
di-n-butyl phthalate	a	a	a	a	11	a	1	1		a	a
diethyl phthalate	ā	a	a	a			a				
3,4 benzofluoranthene	a										
benzo(k) fluoranthene	a										
butyl benzylphthalate				a			a				
methylene chloride	16	16	2300	3100	990	2000	19	1	0.1		0.75
1,2-dichlorobenzene				a							
1,4-dichlorobenzene				a							
chlorobenzene				a	a						
heptachlor				0.11b	0.146						
beta-BHC				0.18b	0.3b	4.04b					
gamma-BHC				0.16b	0.25b						
alpha-BHC					0.18b	0.25b					1
aldrin				0.17b							
dieldrin								0.012		0.0046	
chlordane									0.11b		
heptachlorepoxide						1.46b					
delta-BHC						0.95b					
fluoranthene							a			a	
benzo(a) anthracene							a			a	
anthracene							a				
pyrene							a			a	
Chrysene								ļ		<u> </u>	0.02b

NOTE:

All results in ppb

Blanks indicate below detection limit

a - Compound detected at value below specified contract detection limit (compound identified as present, but not quantified)

b- value not confirmed by GCMS

Samples RO9 and RO12 are water and soil blanks, respectively

TABLE B-11: INORGANIC ANALYSIS OF GROUND WATER AND SOIL SAMPLES IN THE VICINITY OF CREEK SECTOR B (COLLECTED BY USEPA 3-3-82)

<i>-</i>					SAMPLE LO	DCATIONS				
				ID WATER - 1			i	SOIL 11		
PARAMETERS	501	S02	203	504	505	<u> 506</u>	S07	5010	5011	R012
Aluminum Antimony		400	390		940	1,200	750	600	430	
Arsenic	11			29			1.3	1.0		
Barium							80	80	80	
Beryllium							·			
Boron	10,500	11,000	8,000	1,800	140	110				
Cadmium Chromium	4.2	14	31	5.3		2.8	1.06 2.2	1.64	0.29	3.2
Cobalt	62	70	82	95						
Copper	65						16	24	13	
Iron	65,000	31,000	38,000	28,000	530	250	340	360	240	
Lead	570	97	74	9	11	10	(45)	(20)	(25)	
Manganese Mercury	1,600	1,100	1,500	5,100	460	80	(45) 120	(20) 630	134	***********
Mercury# Nickel	0.1	0.4	0.4	0.2	0.1		6.5	5.5	4	
Selenium Silver										
	 									
Thallium Tin Yanadium									2	
Zinc	107,000	109.000	40,000	1,900	260	350	96	77	130	

NOTE: Blanks indicate below detection limits

^{() -} Results did not meet USEPA Quality Control criteria - Data unreliable

Duplicate analysis performed by USEPA central regional laboratory
Samples RO9 and RO12 are water and soil blanks, respectively

Quantified levels of bis-(2-ethylhexyl) phthalate were found in wells SO1, SO2, and SO5. In addition, seven compounds from the pesticide fraction were detected in Wells SO4, SO5 (IEPA wells), and SO6. Diethyl phthalate, butyl benzylphthalate, and methylene chloride were detected in the water blank, indicating that values of these parameters found in other samples should be disregarded. Methylene chloride was used to decontaminate sampling equipment, and concentrations of this parameter in all samples should not be considered indicative of aquifer conditions. Water quality standards for lead and cadmium were exceeded in one or more wells.

The soil samples showed trace levels of chlordane and dieldrin. It could not be determined if levels of pesticides found in the gardens soils were attributable to the use of well water or application of commercial pesticide products to the gardens. Phthalates, methylene chloride, chrysene, and chromium were detected in the soil blank (RO12), and these compounds should be disregarded in other samples.

In September and October, 1980 IEPA conducted preliminary air monitoring in CS-8. The survey included use of detector tubes (Drager) for halogenated hydrocarbons, and collection of air samples in charcoal tubes with subsequent laboratory analysis. The detector tubes showed positive readings for hydrocarbons in the northern portion of CS-B, adjacent to the former Waggoner Building. were not quantified, and negative readings were observed in all other areas surveyed. Air samples were collected from two locations in CS-B using charcoal tubes and sampling pumps. Two samples were collected from each location in order to monitor conditions for undisturbed and disturbed soil. Samples from the first location, 40 yards south of Queeny Avenue, showed no positive readings for volatile organic compounds (VOCs) for disturbed or undisturbed soil conditions. Xylene was detected for disturbed and undisturbed soil conditions at the second sampling location, which was 60 yards north of Judith Lane, adjacent to Site M. All samples were extracted and analyzed at IEPAs Springfield Laboratory.

A USEPA Field Investigation Team (FIT) contractor also performed an air monitoring survey in the creek bed in March, 1982. This survey involved the use of an organic vapor analyzer (OVA), photoionizer, and Drager detector tubes for phosgene gas. indicated that a small, but measurable, concentration of organic vapors were present in the breathing zone (5 feet above ground surface), with concentrations increasing closer to the creek bed. In the breathing zone, the OVA showed readings up to 0.5 ppm above background, and the HNU readings were as high as 9 ppm above background. The survey crew also observed a 3-inch effluent pipeline adjacent to the former Waggoner Building which was discharging a small stream of oily liquid. OVA and HNU readings were taken approximately 6 inches from the surface where this liquid had pooled. The OVA showed concentrations up to 350 ppm, and the HNU showed concentrations ranging from 400 to 900 ppm in this area. Phosgene gas was not detected in any area using the Drager tubes.

HRS scores have been calculated on two separate occasions for Dead Creek. The creek was first scored in July, 1982, by Ecology & Environment, Inc., with a final migration score of 18.48. The site was again scored in March, 1985 by IEPA in an attempt to increase the previous score. IEPAs assessment led to a final score of 29.23, however, this score has not been finalized by USEPA. Route scores for the 1982 assessment were as follows: ground water 4.24, surface water 7.55, and air 30.77. Corresponding route scores in the 1985 assessment were 5.65, 10.07, and 49.23. Observed releases were used for all route scores in both the 1982 and the 1985 scoring packages. The only difference in the assessments was in the value assigned for waste quantity in the three routes. The 1982 package listed waste quantity as unknown (assigned value - 0), while IEPA calculated an approximate volume of waste based on sample results and visual observations.

A significant amount of data has been developed showing a wide range of contaminants in and around CS-B. Review of existing file data indicates numerous possible sources of contamination in the area.

Prior to blocking the culvert at Queeny Avenue, Cerro Copper and Monsanto Chemical reportedly discharged process wastes directly into According to past IEPA inspection reports the former Waggoner Company, an industrial waste hauling operation, discharged wash waters from truck cleaning activities directly to CS-B. IEPA order Waggoner to cease this practice, an unlined surface impoundment was apparently used for disposal of wash water. In the 1940s and 1950s sites H and I were used for disposal of various industrial wastes. These sites were actually a single, large disposal area prior to the construction of Queeny Avenue in the late 1940s. In the 1950s, the Midwest Rubber Company, located west of State Route 50 and south of Queeny Avenue, had an effluent pipeline which ran from their plant location to the northern portion of CS-B. Midwest Rubber Co. reportedly discharged process wastes, including oils and cooling water, to the creek. Site G is a surface/subsurface disposal area with corroded drums and other wastes exposed on the surface. Surface drainage for at least a portion of this site is directed to CS-B.

Data Assessment and Recommendations

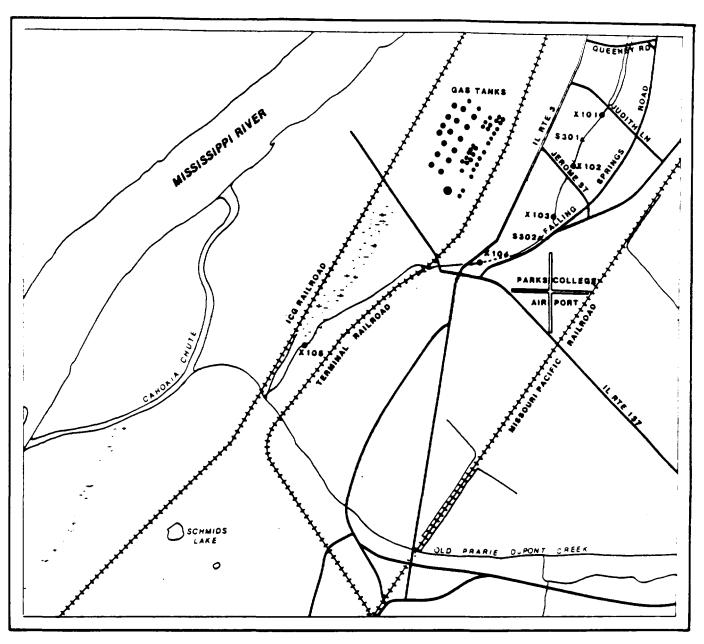
The scope of field investigation work for CS-B during the Dead Creek Project includes collecting three surface water samples from the Creek in Sector B. This sampling program should be sufficient to characterize the water currently in the creek. Soil gas and ambient air monitoring will also be done in and around CS-B.

Although a great deal of data is available for CS-B, most of the data is 4-6 years old. Because of the dynamic nature of the creek and disposal activities in the area, existing conditions may not be accurately characterized by historical sampling data. Feasibility study activities for CS-B could be accomplished using existing data and applying assumptions concerning chemical profiles (contaminant distribution). However, to properly accomplish the feasibility study activities, a current chemical depth profile of the creek bed should be developed. This would consist of collecting

sediment and subsurface soil samples from several locations in the creek bed and along the banks. The hydrology of the area has not been well-defined and should be addressed further. It has not been established whether the ground water discharges to Dead Creek or the creek acts as a recharge conduit for the Henry Formation aquifer. If discharge to the creek is occurring, the subsurface disposal areas (Sites H and I in particular) may be major contributors to the contamination of the creek.

Accordingly, existing IEPA monitoring wells on both sides of the creek should be redeveloped to allow for accurate water level measurements. This, in conjunction with detailed surveying of the creek bed and water levels in the creek, would allow adequate assessment of the hydrology in the area. This would be best accomplished using continuous-recording water level instrumentation, and should be continued over a period of time sufficient to address seasonal fluctuations. In addition, records of industries in the area should be thoroughly reviewed to establish a profile of possible releases from each source.

SECTORS C THROUGH F - DEAD CREEK


Site Description

Creek Sectors C through F include the entire length of Dead Creek south of Judith Lane. This portion of the creek flows south-southwest through the Village of Cahokia prior to discharge into the Prairie DuPont floodway. The floodway subsequently discharges into the Cahokia Chute of the Mississippi River. The creek is somewhat wider through these sectors than in sectors A and B, and is not as heavily vegetated as Sector B. Creek Sectors C through F are delineated as follows: CS-C- Judith Lane to Cahokia Street, CS-D - Cahokia Street to Jerome Street, CS-E - Jerome Street to the intersection of State Route 3 and State Route 157, CS-F - intersection (as above) to the discharge point in the old Prairie DuPont Creek.

Site History and Previous Investigations

There are no known discharges to Dead Creek south of Judith Lane, although several apparent discharge pipes have been observed during preliminary reconnaissance. Site N of the Dead Creek Project is located immediately east of the creek in the southern portion of CS-C. Land use in the vicinity of Sectors C through F is residential/commercial for the most part. The creek flows underground through a culvert in the southern part of CS-E near Parks College. Although the Culvert under Judith Lane has reportedly been blocked, flow emanating from the culvert has been observed on several occasions.

IEPA collected five sediment and two surface water samples from creek Sectors C through F as part of their Preliminary Hydrogeological Study conducted in 1980. Locations of these samples are shown in Figure C-1, and analytical data is presented in Table C-1. The water samples showed very little evidence of contamination, although concentrations of copper exceeded the IEPA's water quality

LEGEND
X101 SEDIMENT SAMPLING LOCATION
S301 SURFACE WATER SAMPLING LOCATION
RESIDENTIAL AREA

FIGURE C-1
IEPA SAMPLING LOCATIONS CREEK SECTORS C THROUGH F

TABLE C-1: ANALYSIS OF SURFACE WATER AND SEDIMENT SAMPLES FROM CREEK SECTORS C THROUGH F (COLLECTED BY IEPA 9-25-80)

SAMPLE LOCATIONS

	L.	ater		Ç	ediment		
PARAMETERS	<u> 5301</u>	5302	x101	x102	x103	x104	x105
Aluminum			12,000				
Arsenic	0.008	0.006	26				
Barium	0.12	0.08	1,300	4,700	210	390	475
Berylium	-	-	-	3	-	2	_
Boron	0.06	0.04	-	76	_	- -	-
Cadmium	-	-	-	50	8	31	2
Calcium			24,000	5,300	210,000	16,000	13,000
Chromium	-	0.01	400	50	60	50	_
Cobalt			40	32	6	8	9
Copper	0.26	0.04	15,000	17,200	320	1,800	360
Iron	0.66	0.87	57,000	110,000	11,000	19,000	18,000
Lead	-	-	800	1,300	260	250	[*] 75
Magnesium	3	2	7,100	2,000	10,000	5,100	3,300
Manganese	0.03	0.12	600	170	210	160	200
Mercury	ļ		1.2				
Nickel	0.05	0.01	2,000	2,300	45	600	-
Phosphorus	0.19	0.2	_	6,200	720	1,200	4,200
Potassium	6.6	3.3	2,400	900	1,400	2,100	1,400
Silver	-	-	-	45	10	-	-
Sodium	3	3	800	1,100	100	190	125
Strontium	0.08	0.07	100	140	210	47	43
Vanadium	-	-	-	50	22	31	35
Zinc	0.24	-	12,000	21,000	900	5,600	780
PCB	<u> </u>	-	0.12	0.12	2.8	2	

NOTE: All results in ppm.

Blanks indicate parameter not analyzed.

- Indicates below detection limits.

standard in both samples. This was the only parameter in either sample which exceeded the standards.

The sediment samples contained relatively high concentrations of cadmium, chromium, copper, lead, nickel, and zinc. Concentrations of these parameters were several times higher than those found in the background soil sample in the IEPA study (sample x121; see Creek Sector B, Table B-3). Arsenic was also detected in sample x101, but was not analyzed for in the other downstream samples. The highest concentrations of aluminum (12,000 ppm) and boron (76 ppm) in the IEPA study were found in downstream sediment samples x101 and x102. respectively. PCB was the only organic compound detected in the downstream sediment samples, with the highest concentration (2.8 ppm) found in x103. Sample x105 was the only downstream sample that did not contain PCBs. These results illustrate the uneven distribution of contaminants within Dead Creek. While some contaminants in Sectors C through F are lower than in CS-B, barium, cadmium, chromium, lead, and nickel were detected in comparable or higher concentrations than sediments in upstream samples. This could be attributable to the mechanical properties of stream flow, such as gradient, channel dimensions, and flow velocity, or to the existence of unknown contaminant sources located in downstream areas.

Data Assessment and Recommendations

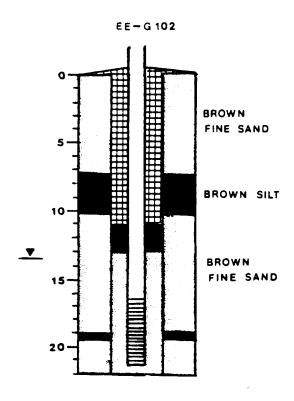
The scope of work for these sectors of the creek during the Dead Creek project includes collecting the following samples: CS-C, 2 surface water, 2 sediment; CS-D, 1 surface water, 2 sediment; CS-E, 3 surface water, 10 sediment; and CS-F, 4 surface water, 10 sediment. The sampling in CS-F will be postponed, pending review of data from the other creek sectors. A soil gas survey and ambient air monitoring will also be conducted in and around Creek Sectors C through E.

For Creek Sectors C through F, waste characterization for the feasibility study activities could be completed with sampling as

proposed provided assumptions regarding chemical profiles are made. However, in order to accurately estimate waste quantities and define to what depth contamination has occurred, a more detailed sampling program is necessary. This would include developing a depth profile of chemical constituents in the creek bed. Cores should be taken from upstream and downstream locations, with additional sampling at point sources as necessary.

APPENDIX B

BORING LOGS AND MONITORING WELL DATA


Design Ware	Dood Crook		(IEPA well replaced)
Project Name			Boring/Well No. EE-G101
Project No. Date Prepared			Location Site G
	Kevin Phillips		Top of Inner Casing Elev. 412.35
			Drilling Firm Fox drilling
Depth (ft)	Descri	ption	Driller Jerry Hammon
•			Start & Completion Dates 2/25, 2/25/87
			Type of Rig Mobile 8-61
	EE-G101		
			Method of Drilling 3 3/4" I.D.
			hollow stem augers
	1 1		
0-		•	WELL DATA
			Hole Diam. 8 in.
	₩ ₩		Boring Depth 23 ft.
3	###	DARK BROWN AND GRAY	Casing and Screen Diam. 2 in.
3		CLAYEY SILT	Screen Interval 18 - 23 ft.
5	## ##	OLATET SILI	Screen Type stainless steel 0.01" slot
3-	##		Stickup 2.51 ft.
Ī.	₩ #		Well Type monitoring
7	## ##		Well Construction:
7		BROWN SILT	Filter Peck 22.5 - 14 ft.
▼ 1	## ##	BROWN GIE!	Seel 14 - 12 ft. Grout 12 ft. to surface
10			Lock No. 2834
1 .			
1			TEST DATA
4			Static Water Elev. 396.86 Date 3-26-87
15-			Static Water Elev. 398.22 Date 5-11-87
'"]		TAN VERY FINE SAND	Slug Test Yes X No
]			Test Date 5-12-87
1			Hydraulic Conductivity 1.3 x 10 cm/sec
			Other pH = 7.0
••			Cond. = 1600 umhos Temp. = 58° F
20-			Cloudy, yellowish
4		_	WATER QUALITY
23			Samples Taken Yes X No
			No. of Samples 1 round
			Types of Samples groundwater
			Date Sampled 3-17-87
			Samplers E & E
			Samples Analyzed for HSL compounds
			Split Samples Yes No_X_
			Recipient
			Comments
			REMARKS

Site Dead Creek Site-G	Boring/Well No.	Well #EE-G101 IEPA replacement well
		·
Sample Depth Blow Count	Description	
	Straight drill boring.	
	Stratigraphic sequence description taken from IEF log for monitoring well G-101 boring no. 8-1 (10-	•
	0-7.5' Dark brown and gray clayey SILT. Trace of	of natural organics.
	7.5-10' Brown micaceous SILT. Water level @ 9.5'.	
	10-15' Tan very fine grain SAND. Arenitic; mode rounded. Contains ferro-magnesian minerals.	erately sorted to
	15-32' Tan fine to coarse grain SAND. Arkosic, poorly sorted, contains ferro-magnesian minerals	•

E.O.B. @ 23 ft. (for replacement well #EEG101)

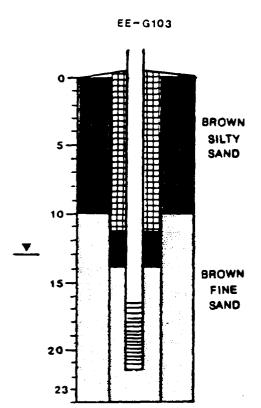
Project Name	Dead Creek
Project No.	IL 3140
Date Prepared	2-26-87
Prepared by	Kevin Phillips

Depth (ft) Description

(IEPA well replaced)
Boring/Well No. EE-G102
Location Site G
Owner IEPA
Owner TEPA
Top of Inner Casing Elev. 409.10
Drilling Firm Fox drilling Driller Jerry Hammon
Driller Jarry Mannen
Dillier Jeffy Hammon
Start & Completion Dates 2/26, 2/26/87
Type of Rig Mobile B-61
Tibe of Kid Hoptie B-of
Method of Drilling 3 3/4" I.D.
hollow stem augers
HOLIOA SEAM ENGALS
WELL DATA
Hole Diam. 8 in.
Boring Depth 21.5 ft.
2011.19
Casing and Screen Diam. 2 in.
Screen Interval 16.5 - 21.5 ft.
Screen Tune stainless steel 0 01° slat
Screen Type stainless steel 0.01° slot
Stickup 1.22 ft.
Well Type monitoring
Well Construction:
Filter Pack 22 - 13 ft. Natural
Seal 13 - 11 f*
Filter Pack 22 - 13 ft. Natural Seal 13 - 11 ft. Grout 11 ft. to surface
Grout 11 ft. to surface
Lock No. 2834
TEST DATA
•=== =====
Static Water Elev. 397.37 Date 3-26-87
Static Water Play 198 57 Date 5-11-87
Static Water Elev. 397.37 Date $3-26-87$ Static Water Elev. 398.57 Date $5-11-87$
Siud Test Yes X No
Tast Date 5-17-87
Test Date 5-12-87
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F
Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E 6 E
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E 6 E
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E 6 E
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E 6 E
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E 6 E
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E E E Samples Analyzed for HSL compounds
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E E E Samples Analyzed for HSL compounds
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E 6 E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec Other pH = 6.8 Cond. = 1000 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-24-87 Samplers E 6 E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec
Hydraulic Conductivity 1.4 x 10 cm/sec

Site Dead Creek Site-G

Boring/Well Bo. Well #EE-G102


(replacement well for IEPA G-102)

Sample Depth	Blow Coun	Description
3.5 - 5	2-3-5	0-5 Loose brown silty fine grain SAND. Trace to little silt. Moist.
8.5 - 10	2-2-4	Loose brown sandy SILT. Some fine grain sand. Very moist.
13.5 - 15	2-3-5	Loose brown fine grain SAND. Well sorted and rounded to sub-rounded. Wet.
18.5 - 20	1-2-4	18.5-19 Gray silty fine grain SAND. Wet. 19'-19'10" - Gray very sandy SILT. Wet. 19'10"-20' - Gray very silty fine grain SAND. Wet. 20-21.5" - Gray fine, coarse grain sand (from IEPA log).
		E.O.B. @ 21.5'

Project Name	Dead_Creek
Project No.	IL 3140
Date Prepared	2-26-87
Prepared by _	Kevin Phillips

Depth (ft)

Description

Boring/Well No. EE-G103
Location Site G
0
Owner IEPA
Top of Inner Casing Elev. 408.74
Drilling Firm Fox drilling Driller Jerry Hammon Start & Completion Dates 2/26, 2/26/87
Orillan Janes Hanne
Dillier Jerry Hammon
Start & Completion Dates 2/26, 2/26/87
Type of Rig Mobile B-61
-1be or widioptic p_oi
Method of Drilling _ 3 3/4" I.D.
hollow stem augers
- Hotton Step Edders
WELL DATA
WELL UNIA
Hole Diam. 8 in. Boring Depth 23.5 ft. Casing and Screen Diam. 2 in.
Boring Depth 23 5 ft
33.3 IC.
Casing and Screen Diam 2 in
Screen Interval 16.5 - 21.5 ft. Screen Type stainless steel 0.01" slot
Screen Tune stainless steel 0 01" elet
School type scalings school 0.01 Side
SCIERUD I.US PT.
Well Type monitoring
Wall Construction.
mithin much an arms of the
Filter Pack 22 - 14 ft. Natural
Filter Pack 22 - 14 ft. Natural Seal 14 - 11.5 ft. Grout 11.5 ft. to surface
Grout 11 5 ft to surface
31040 11.5 10. 00 5011200
Lock No. 2834
TEST DATA
7777 44744
Static Water Elev. 397.43 Date 3-26-87
Static Water Elev. 398.57 Date 5-11-87
Slug Test Ves No V
Static Water Elev. 397.43 Date 3-26-87
Test Date
Hydraulic Conductivity
Other of 5 2
OCHUL DH = 3.2
Cond. = 1200 umhos Temp. = 36° F
Cloudy, yellowish
Cloudy, yellowish
Cloudy, yellowish WATER QUALITY
Cloudy, yellowish WATER QUALITY
Cloudy, yellowish WATER QUALITY
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E E E
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E E E Samples Analysed for HSL compounds
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E E Samples Analysed for HSL compounds Split Samples Yes No X
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E E Samples Analyzed for HSL compounds Split Samples Yes No X
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E E Samples Analyzed for HSL compounds Split Samples Yes No X
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E E E Samples Analysed for HSL compounds Split Samples Yes No X Recipient Comments
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples 9 roundwater Date Sampled 3-17-87 Samplers E E E Samples Analysed for HSL compounds Split Samples Yes No X Recipient Comments
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples 9 roundwater Date Sampled 3-17-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples 9 roundwater Date Sampled 3-17-87 Samplers E E E Samples Analysed for HSL compounds Split Samples Yes No X Recipient Comments
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples 9 roundwater Date Sampled 3-17-87 Samplers E E E Samples Analysed for HSL compounds Split Samples Yes No X Recipient Comments
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples 9 roundwater Date Sampled 3-17-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Samples Taken Yes X No
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples 9 roundwater Date Sampled 3-17-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples 9 roundwater Date Sampled 3-17-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples 9 roundwater Date Sampled 3-17-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cloudy, yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples 9 roundwater Date Sampled 3-17-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments

Site Dead Creek Site-G	Boring/Well No. Well #EE-G103

Sample Depti	Blow Count	Description
		Straight drill to 8.5'.
		Stratigraphic sequence based on auger cuttings.
8.5 - 10	7-9-10	0-10 Firm brown very silty fine grain SAND. Some silt. Send is well sorted and rounded to sub-rounded. Moist.
13.5 - 15	5-17-12	Firm brown fine grain SAND. Well sorted. Some black stained stringers throughout. Wet. Slight chemical odor.
18.5 - 20	1-2-3	Loose brown fine grain SAND. Well sorted and rounded. Trace of natura organic layers and wood particles. Wet.
22 - 23.5	5-9-9	Firm brown fine grain SAND. Trace of medium grain sand and small gravel.
		E.O.B. @ 23.5'.

Project Name	Dead Creek
Project No.	IL 3140
Date Prepared	2-25-87
Prepared by	Kevin Phillips
Depth (ft)	Description

20

23

EE-G104

LIGHT TAN
SANDY SILT

LIGHT TAN
SILTY SAND

TAN FINE - MED SAND

GRAY CLAY

TAN AND BROWN

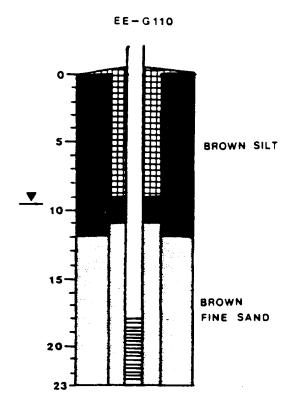
FINE - MED

SAND

Denies (Well We CR dies
Boring/Well No. EE-G104
Location Site G
Owner IEPA
Top of Inner Casing Elev. 408.96
Drilling Firm For drilling
Drilling Firm Fox drilling Driller Jerry Hammon Start & Completion Dates 2/25, 2/25/87 Type of Rig Mobile B-61
Driller Jerry Hammon
Start & Completion Dates 2/25, 2/25/87
Type of Rig Mobile B-61
Method of Drilling 3 3/4" I.D.
hallow above aurona
hollow stem augers
MOTT NAME
WELL DATA
Hole Diam. 8 in.
Parine Book 34 44
Boring Depth 24 ft.
Boring Depth 24 ft. Casing and Screen Diam. 2 in.
Screen Interval 19 - 24 ft. Screen Type stainless steel 0.01" slot
Screen Type stainless steel 0.01" slot
Stickup 1.09 ft.
Well Type monitoring
Well Construction:
Filter Pack 24 - 17 ft. Seal 17 - 15 ft.
Seal 17 - 15 ft.
Grout 15 ft. to surface
Grout 15 ft. to surface Lock No. 2834

TEST DATA
1801 DUIL
Static Water Elev. 397.01 Date 3-26-87
Static Water Elev. 398.24 Date 5-11-87
Static Water Elev. 398.24 Date 5-11-87 Slug Test Yes No X
Hydraulic Conductivity
Other of f
Other pH = 6.5
Other pH = 6.5 Cond. = 1000 umhos Temp. = 54° F
Other pH = 6.5 Cond. = 1000 umhos Temp. = 54° P
Other pH = 6.5 Cond. = 1000 umhos Temp. = 54° F
Other pH = 6.5 Cond. = 1000 umhos Temp. = 54° F
Other pH = 6.5 Cond. = 1000 umhos Temp. = 54° F
Other pH = 6.5 Cond. = 1000 umhos Temp. = 54° F
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
Other pH = 6.5 Cond. = 1000 umhos Temp. = 54° F
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples qroundwater Date Sampled 3-17-87
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples qroundwater Date Sampled 3-17-87
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samples Analyzed for HSL compounds
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samples Analyzed for HSL compounds
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments
Cond. = 1000 umhos Temp. = 54° F WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments

Site Dead Creek Site-G	Boring/Well No. Well #EE-G104
Sample Depth Blow Count	Description
	Straight drill boring.
	Stratigraphic sequence description taken from IEPA report (April, 1981) log for monitoring well G-104 boring no. 8-4 (10-9-80).
	0-7 Light tan sandy SILT. Trace of clay. 7 - 12 Light tan silty SAND. Micaceous. 12-14.5 Tan fine to medium grain SAND. Arkosic. 14.5-16.5 Gray silty CLAY. 16.5-37.5 Tan and brown fine to medium grain SAND. Arkosic. Poorly sorted. Subrounded. Trace of small gravel.
	E.O.B. @ 24' (for replacement well # EEG 104)


	(IEPA well replaced)
Project Name Dead Creek	Boring/Well No. EE-G108
Project No. IL 3140	Location Site G
Date Prepared 3-2-87	Owner IEPA
Prepared by Kevin Phillips	Top of Inner Casing Elev. 407.21
	Drilling Firm Fox drilling
Depth (ft) Description	Driller Jerry Hammon
	Start & Completion Dates 3/2/87,3/2/87
	Type of Rig Mobile B-61
EE-G108	
	Method of Drilling 3 3/4" I.D.
1.1	hollow stem augers
	WELL DATA
	4-1
7 ₩₩ ## 	Hole Diam. 8 in.
-1 ₩₩ / ##1 	Boring Depth 30 ft. Casing and Screen Diam. 2 in.
	Screen Interval 24 - 29 ft.
TYYYY HILL	Screen Type stainless steel 0.01" slot
5	Stickup 0.93 ft.
-KYYYY1###	Well Type monitoring
	Well Construction:
	Filter Pack 29 - 22 ft.
	Seal 22 - 20 ft.
10 444444	Grout 20 ft. to surface
	Lock No. 2834
-	TEST DATA
BROWN AND	Static Water Elev. 397.96 Date 3-26-87 Static Water Elev. 398.85 Date 5-11-87
15- BLACK SILT	Slug Test Yes No X
- ::: ::: :::	Test Date
	Hydraulic Conductivity
	Other pH = 5.4
-	Cond. = 1800 umhos Temp. = 56° F
20-	Clear to cloudy No odor
	WATER QUALITY
	Samples Taken Yes X No
	No. of Samples 1 round
25-18-18-18-18-18-18-18-18-18-18-18-18-18-	Types of Samples groundwater
DARK GRAY	Date Sampled 3-18-87
FINE SAND	Samplers E & E
	Samples Analyzed for HSL compounds
30	
	Split Samples Yes X No
	Recipient Enviropect
	Comments
	REMARES

Site Dead Creek	Boring/Well No. Well #EE-G108 (replacement well for IEPA G-108)
Sample Depth Blow Count	Description
	Straight drill to 23.5'
	Stratigraphy sequence based on auger cuttings.
	0-10 FILL consisting of brown-black very silty CLAY.
	10-23.5 Brown clayey SILT.
	23.5-25 Black very sandy SILT. Some fine grain sand. Very moist.
	28.5-30 Black to dark gray silty fine SAND. Well sorted. Wet.
	E.O.B. @ 30'.

Dead Creek
IL 3140
12-18-86
Tim Maley

Depth (ft)

Description

	(IEPA well replaced)
Boring/Well No.	(IEPA well replaced) EE-G110 G
Location Site	G
Owner IEPA	
	sing Elev. 409.00
rop or inner Cas	1ng E10V. 409.00
Drilling Firm _	rox drilling
Driller Jerry	Hammon
Start & Completi	on Dates12/18.12/18/86
Type of Rig Mc	bile B-61
Mathod of Drilli	ing 3 3/4" I.D.
hallen aber	3 3/4 1.D.
hollow stem au	igers
	ELL DATA
Hole Diam. 8 i Boring Depth 2	in.
Boring Depth 2	3.0 ft.
Casing and Scree	on Diam. 2 in.
Screen Interval	1A = 23 ft
Screen Theology	2) 252 2522 2 2 2 2 2 2 2 2 2 2 2 2 2 2
sereen lybe stal	nless steel 0.01" slot
Stickup 1.82 6	<u> </u>
Well Type <u>noni</u>	toring
Well Construction	n:
Filter Pack	23 - 11 ft. Natural
Seal 11 - 9	ft.
Seal 11 - 9 Grout 9 ft.	to surface
Lock No. 28	134
20CK NO	
1	PEST DATA
Static Water Ele	v. 397.49 Date 3-26-87 v. 398.52 Date 5-11-87
Static Water Ele	v. 198.52 Date 5-11-87
el	11 V
Test Date5-13	Yes X No
3-13	7-67
Hydraulic Conduc	tivity 5.3 x 10 cm/sec
Other <u>pH =</u>	6.8
Cond. = 1200 t	6.8
Clear to yello	wish
WATI	ER QUALITY
Samples Taken No. of Samples	Yes X No
No. of Samples	1 round
Types of Samples	groundwater
Date Sampled3	1-24-87
Samplers E & E	
Samples Analyzed	for HSL compounds
Split Samples	YesNo_X
Recipient	
-	
Comments	
	REMARKS
	
· 	

Site Dead Creek Site-G

Boring/Well No. Well eEE-G110

IEPA replacement well

Sample Depth Blow Count

Description

Straight drill to 13.5'.

Stratigraphic sequence based on auger cuttings.

0 to 1' black topsoil.

1 to 12' brown sandy SILT

Begin sampling at 13.5'.

13.5 - 15

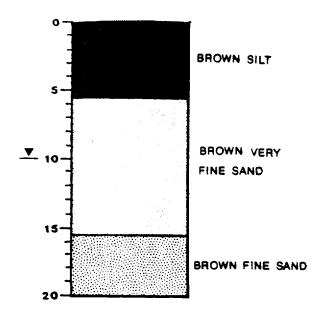
3-7-6

Brown silty SAND. Wet.

Brown to gray fine to medium grain SAND. Wet.

18.5 - 20

3-4-5


E.O.B. @ 23'

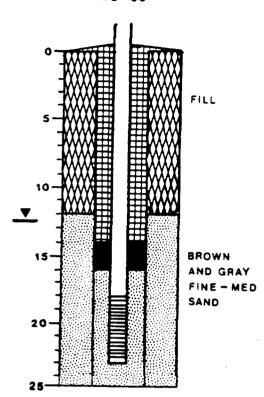
Project Name	Dead Creek
Project No.	IL 3140
Date Prepared	1-12-87
Prepared by	Tim Maley

Depth (ft)

Description

G - 1

Botting/Wett No. G-1	
Location Site G	
Owner IEPA	
Top of Inner Casing Elev. NA	
Deillies Sies	
Drilling Firm Fox drilling	
Driller Jerry Hammon	
Driller Jerry Hammon Start & Completion Dates 1/12, 1/1	2/87
Type of Rig Mobile B-61	
Type of King Hoofie B-of	
Method of Drilling 3 3/4" I.D.	
hollow stem augers	
WELL DATA	
Hole Diem. 8 in. Boring Depth 20.0 ft.	
Renies Breek	
Boring Depth 20.0 ft.	
Casing and Screen Diam.	
Screen Interval	
Screen Type	
Jordon Type	
Stickup Well Type	
Well Type	
Well Construction:	
milham mask	
Filter Pack	
Seal	
Grout	
Lock No.	
TEST DATA	
Static Water Elev. Date Static Water Elev. Date Slug Test Yes No	
Static water Elev Date	
Static Water Elev Date	
Slug Test Yes No	
Hydraulic Conductivity	
Other	
<u> </u>	
MATER QUALITY	
- 1 - 1	
Samples Taken Yes No_	<u> </u>
No. of Samples	
Types of Samples	
Types of Semples	
Date Sampled	
Date Sampled	
Sambiels	
Samples Analyzed for	
Split Samples Yes No	Х
- · · · · · · · · · · · · · · · · · · ·	
Recipient	
Recipient	_
Recipient Comments Subsurface soil samples	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20'	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20'	
Recipient Comments Subsurface soil samples	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20'	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20 analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20'	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20 analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 0 - 10' and 10 - 20' analyzed for HSL compounds.	


		 	 * · · · · · · · · · · · · · · · · · · ·		
Site	Dead Creek Si	_	Boring/Well No.	G-1	

Sample Depth Blow Count		Description	
1 - 2.5	2-1-1	Brown SILT. Trace of fine grain sand (dry).	
3.5 - 5	1-2-2	Same as above.	
6 - 7.5	1-1-1	Brown very fine grain SAND. Trace of silt (wet @ 7').	
8.5 - 10	1-1-1	Same as above. Trace of rust and gray coloring among brown very fine grain sand (wet).	
11 - 12.5	1-2-3	Brown very fine grain SAND. Increasingly sultier (wet).	
13.5 - 15	6-4-8	Same as above.	
16 - 17.5	2-7-6	Brown fine grain SAND (wet).	
18.5 - 20	4-11-12	Same as above.	
		E.O.B. @ 20' Water level @ completion approx. 10'.	

Project Name	Dead Creek
Project No.	IL 3140
Date Prepared	1-14-87
Prepared by	Tim Maley
_	

Depth (ft) Description

EE-05

Boring/Well No. G-2/EE-05
Location Site G
Owner IEPA
Top of Inner Casing Elev. 411.36
Drilling Firm Fox drilling
Driller Jerry Hammon Start & Completion Dates 1/14, 1/14/87
Start & Completion Dates 1/14, 1/14/87
Type of Rig Mobile B-61
Method of Drilling 3 3/4" I.D.
hollow stem augers
WELL DATA
Hole Diam. 8 in.
Boring Depth 25 ft.
Casing and Screen Diam. 2 in.
Casing and Screen Diam. 2 in. Screen Interval 18 - 23 ft.
Screen Type stainless steel 0.01" slot Stickup 2.3 ft.
Stickup 2.3 ft.
Well Type monitoring
Well Construction:
Filter Pack 23 - 16 ft. Seal 16 - 14 ft. Grout 14 ft. to surface Lock No. 2834
Seal 16 - 14 ft.
Tock No. 2834
2004 NO. 2834
TEST DATA
00.00 to 10.00 mls. 200 00 ms. 2 20 43
Static Water Elev. 396.69 Date $3-26-87$ Static Water Elev. 398.17 Date $5-11-87$
Static water Elev. 398.17 Date 3-11-67
Slug Test Yes No X Test Date
Hydraulic Conductivity
Other DH = 5.2
Other <u>pH</u> = 5.2 Cond. = 2200 umhos Temp. = 56° F
WATER QUALITY
_
Samples Taken Yes X No No. of Samples 1 round
No. of Samples 1 round
Types of Samples groundwater
Date Sampled 3-18-87
Samplers E & E
Samplers E 6 E Samples Analyzed for HSL compounds
Split Samples Yes X No
Split Samples Yes X No Recipient Enviropact
Comments Subsurface soil sample
from boring 5 - 15' analyzed for
HSL compounds.
REMARES
Slight organic odor

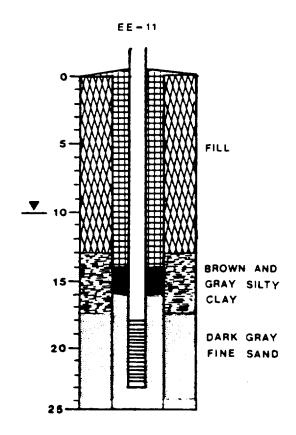
site De	d Creek Site-G	Boring/Well No. G-2/Well #EE-05	-

Sample Depth Blow Count Description 1 - 2.5 3-15-6 FILL consisting of black sandy CLAY with a variety of debris materials including slag, wood, crushed limestone, gravel, and iron fragments (dry). 3.5 - 5 3-5-3 FILL same as above (dry). 6 - 7.5 1-1-1 FILL consisting of brown silty CLAY. Trace of coarse grain sand and paper products (dry). 8.5 - 10 FILL consisting of light gray silty CLAY. Trace of asphalt and a purple 1-0-1 paint-like residue substance (dry). FILL (to 12 feet) consisting of dark brown silty CLAY. From 12 feet is 11 - 12.5 1-3-5 gray medium grain sand (moist). 13.5 - 15 3-4-5 Brown-gray medium grain SAND (wet).

18.5 - 20 1-1-5 Same as above. With less silt.

2-5-10

16 - 17.5


23.5 - 25 | 7-14-18 | Gray fine grain SAND. Trace of silt (wet).

E.O.B. @ 25

Project Name	Dead Creek
Project No.	IL 3140
Date Prepared	1-26-87
Prepared by _	Tim Haley

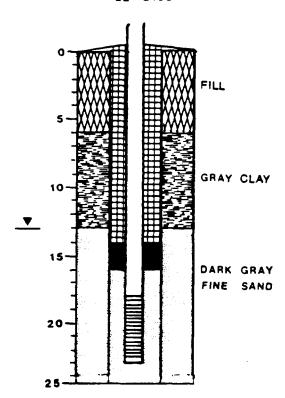
Depth (ft)

Description

Boring/Well No. G-3/EE-11
Location Site G
Top of Inner Casing Elev. 409.02
Drilling Firm Fox drilling Driller Jerry Hammon Start & Completion Dates 1/26-1/26/87
Driller Jerry Hammon
Start & Completion Dates 1/26-1/26/87
Type of Rig Mobile B-61
Method of Drilling 3 3/4" I.D.
hollow stem augers
WELL DATA
Hole Diam. 8 in.
Boring Depth 25 ft.
Casing and Screen Diam. 2 in.
Boring Depth 25 ft. Casing and Screen Diam. 2 in. Screen Interval 18 - 23 ft. Screen Type stainless steel 0.01" slot
Screen Type stainless steel 0.01" slot
Stickup 1.57 ft. Well Type monitoring
Well Construction:
Filter Pack 23 - 16 ft. Seal 16 - 14 ft.
Grout 14 ft. to surface Lock No. 2834
Lock No. 2834
TEST DATA
Static Water Elev. 397.04 Date 3-26-87
Static Water Elev. 398.26 Date 5-11-87
Static Water Elev. 398.26 Date $5-11-87$ Slug Test Yes No X
TARY DAYA
Hydraulic Conductivity
Other <u>pH</u> = 7.2 Cond. = 7000 umhos Temp. = 56° F
Cond. = 7000 umhos Temp. = 56° F
Brown to black
WATER QUALITY
Samples Taken Yes X No
Samples Taken Yes X No No. of Samples 1 round
Samples Taken Yes_X No
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater
Date Sampled 3-24-87
Date Sampled 3-24-87
Date Sampled 3-24-87
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 10' - 20' analyzed
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 10' - 20' analyzed
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 10' - 20' analyzed for HSL compounds.
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 10' - 20' analyzed for HSL compounds.
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 10' - 20' analyzed for HSL compounds.
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 10' - 20' analyzed for HSL compounds.
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 10' - 20' analyzed for HSL compounds.
Date Sampled 3-24-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 10' - 20' analyzed for HSL compounds.

Site Dead Creek Site-G Boring/Well No. G-3/Well #EE-11

... :


Sample Depti	Blow Count	Description
1 - 2.5	8-10-11	FILL consisting of brown-black (mottled) silty CLAY. Trace of medium grain sand and wood particles (dry).
3.5 - 5	1-0-6	FILL consisting of dark brown silty CLAY. Trace of fine grain sand and wood particles (moist).
6 - 7.5	6-5-8	FILL consisting of brown-gray-black sandy CLAY. Trace of slag, coarse grain sand, gravel, and wood particles (moist).
8.5 - 10	7-8-11	FILL consisting of black silty CLAY. Trace of slag, coarse sand, and limestone fragments (moist).
11 - 12.5	2-3-3	FILL consisting of brown-gray silty CLAY. Trace of fine grain sand and wood particles (moist).
		FILL discontinues @ approx. 13'.
13.5 - 15	1-2-3	Brown-gray silty CLAY. Trace of fine grain sand (moist).
16 - 17.5	1-2-2	Same as above. (tip of spoon showed gray fine grain sand, moist to wet).
18.5 - 20	0-0-1	Dark gray fine grain SAND (wet).
21 - 22.5	0-4-8	Dark gray very fine grain SAND. Increasingly siltier (wet).
23.5 - 25	4-5-6	Dark gray fine grain SAND. Trace of coarse grain sand and small gravel. Some black staining @ 25'. (wet).
		E.O.B @ 25'

Project Name	Dead Creek
Project No.	IL 3140
Date Prepared	1-27-87
Prepared by _	Tim Maley

Depth (ft)

Description

EE-G106

(IEPA well replaced)	
Boring/Well No. G-4/EE-G106 Location Site G	
Location Site G	_
Owner IEPA	_
Top of Inner Casing Elev. 407.97	_
Drilling Firm Fox drilling	_
Driller Jerry Hammon	_
Driller Jerry Hammon Start 4 Completion Dates 1/26, 1/27/8	7
Type of Big Mahile 8-61	<u> </u>
Type of Rig Mobile 8-61	_
	_
Method of Drilling 3 3/4" I.D.	_
hollow stem augers	_
WELL DATA	
Hole Diam. 8 in. Boring Depth 25 ft.	
Boring Depth 25 ft.	_
Casing and Screen Diam. 2 in.	_
Screen Interval 18 - 23 ft.	_
Serent Time chairless charl 0 012 cla	_
Screen Type stainless steel 0.01° slo Stickup 1.44 ft.	_
Stickup 1.44 rt.	_
Well Typemonitoring .	_
Well Construction:	
Filter Pack 23 - 16 ft. Natural Seal 16 - 14 ft. Grout 14 ft. to surface Lock No. 2834	_
Seal 16 - 14 ft.	_
Grout 14 ft. to surface	_
Lock No. 2834	_
	_
TEST DATA	
Static Water Elev. 397.40 Date 3-26-8 Static Water Elev. 398.52 Date 5-11-8 Static Test Yes No X	7
Static Water Elev. 398.52 Date 5-11-8	7
Slug Test Yes No X	_
Test Date	_
Hydraulic Conductivity	_
Other DH = 7.4	-
Other pH = 7.4 Cond. = 4200 umhos Temp. = 58° F	-
Dark, cloudy Strong organic odor	-
WATER QUALITY	_
Complex Makes - Vac V - Na	
Samples Taken Yes X No No No No No No No No No No No No No	_
No. or Samples 1 round	_
Types of Samples groundwater	_
	_
Date Sampled 3-24-87 Samplers E 6 E	_
Samples Analyzed for HSL compounds,	-
volatile organics	-
	_
	_
	_
Split Samples Yes No X Recipient	_
Recipient	-
Recipient Comments Subsurface soil samples	-
Comments Subsurface soil samples from boring 5 - 20' analyzed for	- -
Recipient Comments Subsurface soil samples	- - -
Comments Subsurface soil samples from boring 5 - 20' analyzed for	- - -
Comments Subsurface soil samples from boring 5 - 20' analyzed for	
Comments Subsurface soil samples from boring 5 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 5 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 5 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 5 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 5 - 20' analyzed for HSL compounds.	
Comments Subsurface soil samples from boring 5 - 20' analyzed for HSL compounds.	
Recipient Comments Subsurface soil samples from boring 5 - 20' analyzed for HSL compounds.	

Site Dead Creek Site-G Boring/Well No. G-4/well #EE-G106 (IEPA replacement well)

Sample Depth Blow Count		Description		
1 - 2.5	15-7-9	FILL 0-1.5' Black sandy CLAY 1.5-2' Crushed limestone From 2' Gray silty clay. Trace of fine grain sand (dry).		
3.5 - 5	1-2-2	FILL consisting of brown-black (mottled) silty CLAY. Trace of rust color and fine grain sand (dry). FILL discontinues @ approx. 6'.		
6 - 7.5	1-0-2	Gray silty CLAY. Trace of very fine grain sand (moist).		
8.5 - 10	1-2-2	Same as above with increased moisture and very fine grain sand.		
11 - 12.5	1-2-2	Same as above. Some black staining at 12'.		
13.5 - 15	1-2-5	Dark gray very fine grain SAND. Trace of silt and black staining (wet).		
16 - 17.5	0-1-3	Black fine grain SAND (stained). Light and dark laminated banding of black staining (wet).		
18.5 - 20	1-2-5	Dark gray fine grain SAND (wet).		
21 - 22.5	4-9-8	Black fine grain SAND. Trace of silt (wet).		
23.5 - 25	7-13-21	Gray fine grain SAND (wet).		
	Ì	E.O.B. @ 25'		

		
Project Name Dead Cree	k	Boring/Well No. G-5
		Location Site G
Project No. IL 3140 Date Prepared 1-27-87		Owner IEPA
Prepared by Tim Maley		Top of Inner Casing Elev. NA
		Drilling Firm Fox drilling
Depth (ft)	Description	Driller Jerry Hammon
		Start & Completion Dates 1/27, 1/27/87
		Type of Rig Mobile 8-61
		Type of any Addits 8-61
G – 5		Method of Drilling 3 3/4" I.D.
		hollow stem augers
~~***********	/VVVV.	- HOLLOW SCOR Edgets
		WELL DATA
1	MMM FILL	"322 311. "
₹₩₩₩₩₩	WWWI	Hole Diam. 8 in.
ACCUSE TO THE PARTY OF THE PART	2002	Boring Depth 20.0 ft.
	7. G	Casing and Screen Diam.
5 — CARNETTO		Screen Interval
	WASTE	Screen Type
		Stickup
		Well Type
		Well Construction:
		Filter Pack
10-	1	Seal
	BROWN AND GRAY	Grout
		Lock No.
	SILTY CLAY	
Tall which have		TEST DATA
15-4		Static Water Elev. Date
-	DARK BROWN AND BLACK	Static Water Elev Date Date
	FINE SAND	Slug Test Yes No No
	THE SAND	Test Date
		Hydraulic Conductivity
		Other
20-	المنينسان	
		WATER QUALITY
	•	Samples Taken Yes No X
		No. of Samples
		Types of Samples
		Date Sampled
		Samplers
		Samples Analyzed for
		Split Samples Yes No X
		Recipient
		Comments Subsurface soil samples
		from boring 5 - 15' analyzed for
		HSL compounds.
		95475
		REMARKS
		Ground elev. 408.02

Site De	ed Creek Site-G		Boring/Well No.	g-5

٠.٢

Sample Depth Blow Count		t Description
1 - 2.5	4-2-2	FILL consisting of brown-black silty CLAY with a variety of debris including wood particles, coarse grain sand, yellow clay-like substance.
3.5 - 5	1-2-2	WASTE. CLAY and SAND with black tar-like substance. Moist.
6 - 7.5	21-12-5	No recovery. Black stained wood in tip of spoon. (wet)
8.5 - 10	4-5-9	WASTE consisting of brown-gray silty CLAY. Trace of wood particles and black staining. (wet)
		WASTE discontinues @ approx. 9.0'.
11 - 12.5	4-7-8	Dark brown-gray silty CLAY. Trace of black staining and thin fine grain seems # 12'.
13.5 - 15	2-5-6	Dark brown fine grain SAND. Trace of black staining and silt. (wet)
16 - 17.5	2-6-7	Black fine grain SAND. (wet)
18.5 - 20	2-6-9	Same as above. (wet) Thinly laminated with black staining.
		E.O.B. @ 20' ·

Project Name D	and Crack	(IEPA well replaced)
Project No. IL		Boring/Well No. <u>G-6/EE-G107</u> Location <u>Site</u> G
Date Prepared		Owner IEPA
Prepared by Ke		Top of Inner Casing Elev. 406.67
		Drilling Firm Fox drilling
Depth (ft)	Description	Driller Jerry Hammon
		Start & Completion Dates 2/23, 2/23/87
		Type of Rig Mobile B-61
	EE-G107	
		Method of Drilling 3 3/4" I.D.
		hollow stem augers, Rotary
0		WELL DATA
WWE.		
7	## ### !	Hole Diam. 8 in.
7		Boring Depth 30 ft.
1 1		Casing and Screen Diam. 2 in.
	EEB 11 11 11 XXXXXII	Screen Interval 23 - 28 ft. Screen Type stainless steel 0.01" slot
5 — \(\)\\\\		Stickup 1.12 ft.
- (XXXXX)		Well Type monitoring
17777		Well Construction:
- 333		Filter Pack 28 - 23 ft.
		Seal 20 - 18 ft.
10	井 田巡網	Grout 18 ft. to surface
▼		Lock No. 2834
755		
		TEST DATA
	WASTE	
		Static Water Elev. 397.15 Date 3-26-87
15-17		Static Water Elev. 398.32 Date 5-11-87
1993		Slug Test Yes No X Test Date
		Hydraulic Conductivity
		Other pH = 4.8
-537	100 m	Cond. = 3600 umhos Temp. = 62° F
20-23	, ⁷ A & 3 %.	
		WATER QUALITY
3 1	BROWN AND	
7: 1	GRAY FINE SAND	Samples Taken Yes X No
- 7	B GAAT FINE SAND	No. of Samples 1 round
25-		Types of Samples groundwater
7 1		
1 1		Date Sampled 3-18-87
1 1		
-	1	Samplers E & E Samples Analyzed for HSL compounds
30		
		delib deceles . Man W. Ma
		Split Samples Yes X No
		Comments
		REMARKS
		-

Site Dead Creek Site-G

Boring/Well No. G-6/well NEE-G107
(IEPA Replacement well)

Sample Depth	Blow Count	Description
0 - 2.5	15-3-5	FILL consisting of loose fine to medium grain SAND. Trace of medium gravel, slag, and wood particles. (moist)
3.5 - 5	1-1-2	No recovery. Possible void in fill/debris material.
6 - 7.5	11-14-7	FILL consisting of various debris including wood particles, rubber, sand, and gravel. (moist)
8.5 - 10	2-3-24	WASTE consisting of black flaky material. Shale-like and fissile. (dry)
11 - 12.5	5-1-2	WASTE - same as above. (wet)
13.5 - 15	3-2-1	WASTE consisting of small to medium crushed gravel and cloth products. (wet)
16 - 17.5	1-1-1	WASTE - same as above with paper products. (wet)
18.5 - 20	1-1-1	WASTE consisting of black silty sludge. Some glass fragments and gravel. (wet) WASTE discontinues @ approx. 20'.
21 - 22.5	1-2-2	Brown-gray silty fine grain SAND. Well sorted and well rounded. 3 inch- varved sandy silt layer in tip of spoon, sample stained throughout (wet).
23.5 - 25	1-3-3	Same as above. Obvious staining throughout sample. Soft gray silty organic clay layer @ 24'-24'3", (wet)
28.5 - 30	8-12-12	28.5'-29' Brown fine grain SAND. Trace of silt. (wet) 29'-29'2" Gray very silty organic CLAY. Trace of fine grain sand. 29'2"-30' Black stained fine to medium grain SAND. Well sorted and well rounded. (wet)
		E.O.B. @ 30'

Project Name Dead Cr	: • • k	Boring/Well No. <u>G-7</u>
Project No. IL 3140		Location Site G
Date Prepared 2-24-8	37	Owner IEPA
Prepared by Kevin Ph	nillips	Top of Inner Casing Elev. NA
		Drilling Firm Fox drilling
Depth (ft)	Description	Driller Jerry Hammon
		Start & Completion Dates 2/24, 2/24/87
		Type of Rig Mobile 8-61
G -	7	
u –	•	Method of Drilling 3 3/4" I.D.
		hollow stem augers
° ¬/////////	MMMMM FILL	
20303030	AAAAAA AAAA AAAAAA AAAAAAAAAAAAAAAAAAA	WELL DATA
-8257624		
		Hole Diam. 8 in.
		Boring Depth 27.5 ft.
7. T. T. T. T. T. T. T. T. T. T. T. T. T.		Casing and Screen Diam.
		Screen Interval
THE STATE OF THE S		Screen Type
		Stickup
		Well Type
		Well Construction:
No. of the last of		Filter Pack
▼ 10 - C 20 C 20 C 20 C 20 C 20 C 20 C 20 C		Seal
		Grout
-257 657 65		Lock No.
	WASTE	
		TEST DATA
KSISS		iii. onin
15-13-13-13-13-13-13-13-13-13-13-13-13-13-		Static Water Elev Date
		Static Water Elev Date
		Sing Test
		Slug Test Yes No No Test Date
		Hydraulic Conductivity
	700	
20		Other
		· · · · · · · · · · · · · · · · · · ·
		MARCH AULITE
		WATER QUALITY
25		
		Samples Taken Yes No_X
	BROWN FINE - MED SAN	D No. of Samples
-		Types of Samples
· · · · · · · · · · · · · · · · · · ·		
		Date Sampled
		Samplers
		Samples Analyzed for
		Jempies Mierysee tot
	•	
		Split Samples Yes No X
		Recipient
		Comments Subsurface soil samples
		from boring 10 - 25' analyzed for
		HSL compounds.
		remarks
		Ground elev. 407.13

Site	Dead	Creek Site-G

Boring/Well No. G-7

Sample Depth Blow Count		Description
0 - 2.5	30-50/2	WASTE consisting of reddish-brown and black mottled silty CLAY. Some small gravel. Trace of fine to medium grain sand, brick, wood, concrete, and large gravel. (dry)
3.5 - 5	6-3-4	WASTE - Brick, large gravel, concrete, medium sand. (dry)
6 - 7.5	8-2-2	WASTE 6'-7' Same as above 7'-7.5' Black silt-like sludge. Trace of wood chips. (moist)
8.5 - 10	4-10-10	WASTE 8.5'-9.5' Black silty-like sludge. Some fine grain sand. (very moist) 9.5'-10' Brown silty clay. Some fine grain sand. Trace of black staining. (moist)
11 - 12.5	1-1-7	WASTE Black material including oily stained paper and wood products.
13.5 - 15	6-0-1	WASTE - same as above.
16 - 17.5	7-8-8	No recovery - fill including paper products.
18.5 - 20	3-1-1	WASTE consisting of black (stained) fine grain SAND. Trace of paper products and wood. Very loose. (wet)
21 - 22.5	8-7-5	WASTE - same as above.
23.5 - 25	5-4-21	WASTE - consisting of black oily sandy material including paper and wood products. (wet) FILL discontinues @ approx. 25'.
26 - 27.5	8-7-7	Brown fine to medium grain SAND. Well rounded and well sorted. Wood fibers @ 26.5-27'. (wet)
		E.O.B. @ 27.5'

Project Name Dead Creek		Boring/Well No. G-8
Project No. IL 3140		Location Site G
Date Prepared 2-24-87 Prepared by Kevin Phills		Owner IEPA
Prepared by Kevin Philli	ps	Top of Inner Casing Elev. NA
Depth (ft) Des	crintian	Drilling Firm Fox drilling
bepen (10)	eription	Driller Jerry Hammon Start & Completion Dates 2/24, 2/24/87
		Type of Rig Mobile B-61
G - 8		Type or kidmonile B-01
3 – 8		Method of Drilling 3 3/4" I.D.
0		hollow stem augers
	XXX	WELL DAYA
		Hole Diam. 8 in.
	337	Boring Depth 30.0 ft.
5 — 1102 1173	7	Casing and Screen Diam.
	73 P	Screen Interval
		Screen lype
	12	Stickup
		Well Type
		Well Construction:
		Filter Pack
	WASTE	Seal Grout
	252	Grout Lock No.
15-0023		TEST DATA
		Static Water Elev. Date
一方法父母被杀戮	321	Static Water Elev Date Date
	37.	Slug Test Yes No X
		Test Date
20-1253233		Hydraulic Conductivity
	33	Other
		
25-	GREENISH BROWN SANDY SILT	WATER QUALITY
	海鐵	Samples Taken Yes No X
		No. of Samples
	GREENISH BROWN	Types of Samples
	FINE - MED SAND	
30		Date Sampled
		Samplers
		Samples Analyzed for
		Split Samples Yes No X
		Split Samples Yes No X Recipient
		Comments Subsurface soil samples
		from boring 10 - 20' analyzed for
		HSL compounds.
		REMARKS
		Ground elev. 406.57

Site	Dead Creek Site-G	Boring/Well No.	G-8
		<u>-</u> .	

Sample Depth Blow Count		Description			
0 - 2.5	5-10-15	FILL 0-1.5 Brown silty CLAY. Some fine grain sand, brick, and glass fragments. WASTE 1.5-2.5 Black (oily stained) silty CLAY. Some paper products and			
		glass fragments. (moist)			
3.5 - 5	5-9-3	WASTE consisting of gray silty CLAY. Some crushed gravel and wood.			
		Black stained sandy layers @ 3.5-4'. (moist)			
6 - 7.5	2-3-2	WASTE consisting of black (stained) silty CLAY and small gravel. (moist)			
8.5 - 10	2-1-0	WASTE consisting of black (stained) oily CLAY. Some small gravel and			
		and medium grain sand. (very moist)			
11 - 12.5	1-3-5	WASTE consisting of black (heavily stained) oily material. Mottled with			
		with white chalky material. (wet)			
13.5 - 15	3-50/3	WASTE consisting of black oily sludge-like material including wood.			
16 - 17.5	7-12-9	WASTE - Black stained compacted cardboard, paper, and wood. (wet)			
18.5 - 20	3-14-31	WASTE - Black sludge and compacted waste, metal and wood (wet).			
21 - 22.5	4-3-0	WASTE - same as above.			
		WASTE discontinues @ approx. 23'.			
23.5 - 25	2-2-2	Greenish-brown sandy SILT. Some black staining. (wet)			
26 - 27.5	3-5-7	Greenish-brown fine grain SAND. Some black staining. Oily sheen. (wet)			
28.5 - 30	1-4-9	Brown fine to medium grain SAND. Some black staining. (wet)			
		E.O.B. # 30'			

Project Name Dead Creek		Boring/Well No. G-9	
Project No. IL 3140		Location Site G	
Date Prepared 2-24-87		Owner IEPA	
Prepared by Kevin Phillip	<u> </u>	Top of Inner Casing Elev. NA	
		Drilling Firm Fox drilling	
Depth (ft) Desc	ription	Driller Jerry Hammon	
	:	Start & Completion Dates 2/24, 2/	24/87
	•	Type of Rig Mobile B-61	
G - 9	_		
	Ī	Method of Drilling 3 3/4" I.D.	
0-411111111111111	lie -	hollow stem augers	
-IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	YYI .		
	XXI	WELL DATA	
_XXXXXXXXXXXXXXXXXXXX	(XX)	1-1- 84 8 :-	
7 6.XXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXI	'ole Diam. 8 in.	
_ 1	XXI	oring Depth 37.5 ft. asing and Screen Diam.	
5-1	WI FILL	creen Interval	
₹₩₩₩₩₩₩₩	WI	creen Interval	
₹₩₩₩₩₩₩₩	WI .	creen Type	
-! //////////////////////////////////	₩I	tickup ell Type	
- ! YYYYYYYYYYYYY	YYI	ell Construction:	
─ 10 - ! ???????????????????????????????????	<u> </u>	Filter Pack	
	RI .	Seal	
		diode	
		Lock No.	
		TEST DATA	
15-25-35-36-36-36-36-36-36-36-36-36-36-36-36-36-			
-1027/3027/2020	X	tatic Water Elev Date	
		tatic Water Elev Date	
		lug Test Yes No	'
	સ્	ydraulic Conductivity	
20-150-20-2	ST .		
	5 <u>\$</u>	ther	
	WASTE	· · · · · · · · · · · · · · · · · · ·	
	2		
		WATER QUALITY	
		• • • • • • • • • • • • • • • • • • • •	
25-13-2		amples Taken Yes No	X
		o. of Samples	
		ypes of Samples	
- 354 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
30-1-3		ate Sampled	
	<u> </u>	amplers	
		amples Analysed for	
	X		
	<u> </u>		
	2	plit Samples Yes No	X
33		——————————————————————————————————————	
	GREENISH BROWN AND BLACK		
<u> </u>	FINE SAND	omments Subsurface soil sample	
		from boring 35 - 40' analyzed f	or
		HSL compounds.	
		REMARKS	
	-	Ground elev. 407.70	
	-		
	-		
	-		

Site	Dead Creek Site-G	Boring/Well No.	G-9

Sample Depth	Blow Count	Description
0 - 2.5	3-5-5	FILL consisting of black and reddish brown silty CLAY. Trace of small gravel. (moist)
3.5 - 5	3-6-6	FILL (uncompacted) consisting of brown silty CLAY with some medium grain sand and small to medium gravel.
6 - 7.5	3-1-1	1° recovery of uncompacted fill.
8.5 - 10	6-2-2	Little recovery - still in uncompacted fill material including wood chips.
11 - 12.5	1-0-0	WASTE consisting of black fiberous material with pink grease-like globules. (wet) Pink globules float on water.
13.5 - 15	1-2-2	WASTE consisting of black sludge-like material including wood chips.
16 - 17.5	4-5-6	WASTE 16'-17 1/4' Black oily sludge material including small spherical beads. (approx BB. size) (wet) 17 1/4'-17 1/2' Gray sandy silt. Some black staining. (wet)
18.5 - 20	5-7-9	WASTE consisting of black (oily stained) sandy sludge. Some fiberous cloth products. (wet)
21 - 22.5	5-2-2	WASTE consisting of black (oily stained) sandy sludge including cardboard, wood, small spherical beads, paper products, and a thick peanut butter like substance @ 27'. (wet)
23.5 - 25	3-7-24	WASTE - Black paper, cardboard, and wood. (wet)
26 - 27.5	4-7-9	WASTE - Black sludge and wood fibers. Black fine sand in tip.
28.5 - 30	10-50/4	WASTE - same as above with metal banding.
31 - 32.5	7-10-14	WASTE - Black stained wood particles.
33.5 - 35	3-2-8	WASTE - Black sludge. WASTE discontinues @ approx. 36'.
36 - 37.5	8-15-12	Greenish brown-black (stained) only fine grain SAND. Well sorted and well rounded. (wet)
		E.O.B. @ 37.5'.

Project Name	Dead Creek		Boring/Well No. H-1		
Project No.			Location Site H		
Date Prepared			Owner IEPA		
	Tim Maley				
Trabetag by	III MELEY		Top of Inner Casing Elev.	NA	
			Drilling Firm Fox drilling	9	
Depth (ft)	Descri	ption	Driller Jerry Hammon		
	H - 1		Driller Jerry Hammon Start & Completion Dates	12-18-86	
			Type of Rig Mobile B-61		
0 7111	14111111111111111	7			
- 1₩\	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Method of Drilling 3 3/4" I	.D. hollow	
· · · · · · · · · · · · · · · · · · ·	YYYYYYYYYYY		stem_augers and rotary		
- ₩	<i>/////////////////////////////////////</i>				
- ₩	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		WELL DATA		
- I WM	^^^^		WELL DATA		
s- ₩	~~~~~~~				
3 JW	/////////////////////////////////////		Hole Diam. 8 in.		
-1 W/	***************************************		Boring Depth 50.0 ft.		
-1444	****	FILL	Casing and Screen Diam.		
▼ - i ₩	*******		Screen Interval		
<u> </u>	******		Screen Type		
7,,,,,	LAAAAAAAAAAAA		Stickup		
10- }},	***********		Well Type		
-{***	**************		Well Construction:		
_1XXX	************				
TXXX	(XXXXXXXXXXXXXXXXXX		Filter Pack		
17.5	TO A THE PARTY OF		Seal Grout		
- 10%			31041		
15-			Lock No.		
13 338	公下公司 西及34				
	が、これの		TEST DATA		
-23					
- 23	法是一个人的		Static Water Elev. Dr	ate	
	57.35		Static Water Elev. Do	ate	
		WASTE	Slug Test Yes	No	
20			Test Date		
-343	美国的国际		Hydraulic Conductivity		
					
			Other		
رو وا					
4.7	表表示是我们				
25-5	建筑是公司公司				
_ 916	named to a 1920's		WATER QUALITY		
7		·	Samples Taken Yes	No X	
		•	No. of Samples Types of Samples		
- ‡			Types of Samples		
30-}∵					
1					
			Date Sampled		
700		BLACK MED - CAS	Samplers		
- -₹:::		SAND	Samples Analyzed for		
		SAND	Semples Additived to:		
35-					
•					
7					
-1			Split Samples Yes	No_X	
400			Recipient		
		•	Comments Subsurface soil		
40-		1	from boring 15 - 25' and	35 - 50'	
- ₩			analyzed for HSL compounds	g .	
1					
7			REMARES		
1			Strong organic odor		
45-			Scroud ordenic odor		
4		BLACK FINE SAND	403 30		
Be 3			Ground elev. 407.29		
7					
1					
4					
50					

			 					
site <u>c</u>	ead Creek	Site-H		Boris	ng/Well No	۰	н-1	

Sample Depth	Blow Count	Description
1 - 2.5	3-3-8	FILL consisting of black sandy CLAY with some brick and crushed limestone fragments (dry).
3.5 - 5	1-3-2	FILL consisting of brown-black silty CLAY. Trace of small to large gravel and medium grain sand (dry).
6 - 7.5	16-5-4	FILL same as above. Some black asphalt-like substance at 6'.
8.5 ~ 10	12-7-6	FILL consisting of brown fine to medium grain sand and small gravel. Some crushed limestone fragments. (wet).
11 - 12.5	4-4-5	FILL same as above. (wet)
13.5 - 15	2-2-1	WASTE - Broken glass and wood.
16 - 17.5	5-8-22	WASTE - same as above (wet).
18.5 - 20	8-10-15	WASTE - consisting of black (oily stained) sludge-like material including various debris such as concrete, rubber, paper products, wood chips, and small gravel. (wet).
21 - 22.5	4-8-6	WASTE - same as above.
23.5 - 25	4-10-8	WASTE - same as above.
		WASTE discontinues @ approx. 26'.
26 - 27.5	1-1-1	Black (stained) medium to coarse grain SAND. Trace of small gravel.
28.5 - 30	10-14-16	Same as above.
31 - 32.5	6-8-10	Same as above with increased amount of small to large gravel.
33.5 - 35	15-17-21	Same as above with less black staining and less gravel.
36 - 37.5	10-13-16	Same black (stained) medium to coarse grain SAND. Decreasing amount of gravel. (wet)
38.5 - 40	8-11-10	Black (stained) medium grain SAND. (wet)

Site <u>Dead Creek Site</u>	-H Boring/Well No. H-1 (con't)
ample Depth Blow Co	unt Description
41 - 42.5 11-19-	21 Same as above to 42'. From 42' black (stained) fine grain SAND. (wet)
43.5 - 45 11-11-	14 Same as above.
46 - 47.5 10-14-	14 Same as above.
48.5 - 50 10-15-	18 Same as above.

 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 1-6-87

 Prepared by
 Kevin Phillips
 Boring/Well No. H-2/EE-01 Location Site H Owner IEPA Top of Inner Casing Elev. 408.84 Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 1/5/87,1/6/87 Depth (ft) Description Type of Rig Mobile B-61 EE-01 Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary WELL DATA Hole Diam. 8 in.
Boring Depth 35.0 ft.
Casing and Screen Diam. 2 in Screen Interval 28 - 33 ft. FILL Screen Type stainless steel 0.01" slot
Stickup 2.3 ft.
Well Type monitoring
Well Construction: Filter Pack 33 - 22 ft.

Seal 22 - 20 ft.

Grout 10 ft. to surface Lock No. 2834 TEST DATA WASTE Static Water Elev. 397.41 Date 3-26-87 Static Water Elev. 398.55 Date 5-11-87Slug Test Yes Test Date Hydraulic Conductivity Other ph = 6.8

Cond. = 2600 umhos Temp. = 56°

Yellow-brown color, turbid WATER QUALITY Samples Taken Yes No No. of Samples 1 round
Types of Samples Groundwater 25 GRAY Date Sampled 3-17-87
Samplers E & E FINE - MED SAND Samples Analyzed for HSL compounds 30 No X Split Samples Yes_ Recipient 35 Comments Subsurface soil sample from boring 5 - 20' analyzed for HSL compounds. REMARKS Strong organic odor

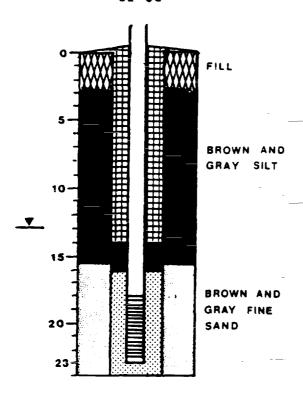
Site Dead Creek Site-H

Boring/Well No. H-2/well # EE-01

Sample Depth	Blow Count	Description		
1 - 2.5	3-3-4	0-1.5 FILL consisting of black cinders and small gravel. (dry) $1.5-2.5$ FILL consisting of brownish cinders, slag, and medium grain sand. (dry)		
3.5 - 5	2-3-3	3.5-4 FILL - same as above. 4-5 FILL consisting of dark gray SILT. Soft and stained. Little of fine grain sand. (very moist)		
7.5	35-17-19	WASTE steel and a coal-like dense black flaky substance.		
1.5 - 10	2-3-3	WASTE - Wood and paper products, heavy black staining.		
.1 - 12.5	3-3-5	WASTE - same as above.		
13.5 - 15	2-3-5	WASTE consisting of black (stained) silt, medium grain sand and wood. (wet)		
.6 - 17.5	4-8-9	WASTE - Wood chips.		
B.5 - 20	5-7-14	WASTE - same as above.		
1 - 22.5	9-10-13	WASTE - same as above.		
		WASTE discontinues @ approx. 23'.		
23.5 - 25	2-1-6	Firm brownish-gray fine-medium grain SAND. Black staining throughout. Well-rounded and well sorted. Rounded to subangular. (wet)		
3.5 - 35	9-10-12	Dense gray fine-medium grain SAND. Trace of coarse grain sand. Fairly well sorted and rounded to subangular. (wet)		
		E.O.B. @ 35		

 Project Name
 Dead Creek

 Project No.
 IL 3140


 Date Prepared
 1-6-87

 Prepared by
 Kevin Phillips

Depth (ft)

Description

EE-02

Boring/Well No.	H-3/EE-02
Location Site	Н
Owner IEPA	
Top of Inner Cas	ing Elev. 409.91
Drilling Firm	Fox drilling
Driller Jerry	Hammon on Dates 1/6/87,1/6/87
Start & Completi	on Dates 1/6/87,1/6/87
Type of Rig Mo	D110 B-01
Method of Drilli	ng <u>3 3/4° I.D.</u>
hollow stem au	gers
	
	LL DATA
Hole Diam. 8 i Boring Depth 2 Casing and Scree	n.
Boring Depth 2	J.0 Pt.
Casing and Screen	n blam. 2 in.
Screen Interval	18 - 23 Ft.
Street lype star	niess steel 0.01" slot t.
Well Type moni	toring
Well Construction	eo: Tud
Seal 16 - T	23 - 16 ft. 4 ft.
Grout 14 ft Lock No. 28	. to surface
Lock No. 28	34
τ	EST DATA
Static Water Ele	v. 397.58 Date 3-26-87 v. 398.61 Date 5-11-87
Static Water Ele	v. 398.61 Date 5-11-87
Slug Test Test Date	Yes No X
Test Date	
Hydraulic Conduc	tivity
Other PH = 4	.0 mhos Temp. = 54 F
Cond. = 4200 u	mhos Temp. = 54 P
Yellowish	
WATE	R QUALITY
Samples Taken No. of Samples	Yes X No
No. of Samples	1 round
Types of Samples	groundwater
Date Sampled 3 Samplers E & E	-17-07
Samplers E & E	
Samples Analyzed	for HSL compounds
Split Samples	YesNo_X
Recipient	
a	
Comments Subsu	rface soil samples - 20' analysed for
rrom boring 10	- 4n. sustinged tot
HSL compounds.	
	remarks
Slight organic	odor
	

Site	Dead	Creek	Site-H

Boring/Well No. H-3/well #EE-02

Sample Depth	Blow Count	Description
1 - 2.5	6-10-13	0-2.5 FILL consisting of dense brown sandy CLAY including small gravel, cinders, and brick fragments.
3.5 - 5	2-3-4	Firm brown SILT and silty CLAY. Trace of fine grain sand. (moist).
6 - 7.5	2-4-6	Firm brown to yellowish brown very sandy SILT. Some fine grain sand and trace of silty clay. (moist)
8.5 - 10	2-2-2	Same as above. (very moist)
11 - 12.5	5-11-14	Dense brownish-gray silt and fine grain SAND. (wet)
13.5 - 15	7-7-7	Same as above.
		Water table @ approx. 13 feet.
16 - 17.5	9-10-20	Very dense gray very silty fine grain SAND. Some silt. Wet.
18.5 - 20	9-10-11	(From 18 to 23 feet) tan dense very fine grain SAND. Very well sorted. Wet.
		E.O.B. @ 23 feet.

			_	
Project Name Dead Creek		Boring/Well No. H-4		
Project Name Dead Creek Project No. IL 3140		Location Site H		
Date Prepared 1-8-87		Owner IEPA	_	
Prepared by Kevin Phillip	3	Top of Inner Casing Elev. NA	_	
		Drilling Firm Fox drilling	_	
Depth (ft) Desc	ription	Driller Jerry Hammon	_	
H - 4		Start & Completion Dates 1/7 & 1/8/8	7	
		Type of Rig Mobile B-61		
	111			
	YYY	Method of Drilling 3 3/4" I.D. hollo	w	
- XXXXXXXXXXXXXXXXXXXX	YYI	stem augers and rotary		
-1XXXXXXXXXXXXXXXXXXXXXX	(XXI			
_#XXXXXXXXXXXXXXXXXXX	XXI FILL	WELL DATA		
<	WI · · —			
	XXI	Hole Diam. 8 in.		
744444444444444444444444444444444444444	W I	Boring Depth 50.0 ft.		
\$5.200 State NO.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Casing and Screen Diam.		
	16	Screen Interval	_	
		Screen Type		
▼ 10 - SENERAL CONTRACTOR		Stickup Well Type		
		Well Type Well Construction:	_	
		Filter Pack		
	()	Seal		
	A¢	Grout	_	
		Lock No.	_	
15-5-3	(a)			
	WASTE	TEST DATA		
	8			
		Static Water Elev Date		
		Static Water Elev. Date		
20-13-14-14-14-14-14-14-14-14-14-14-14-14-14-		Slug Test Yes No		
一次是这是是是	3	Hydraulic Conductivity		
		Other		
			—	
	罗			
25_6000000000000000000000000000000000000			-	
		WATER QUALITY		
		•		
7	·	Samples Taken Yes No_X		
7		No. of Samples		
4	İ	Types of Samples		
30-				
-1				
	1	Date Sampled	_	
		Samples Analyzed for	—	
4		Samples wustAsed tot	—	
35-			_	
4	BROWN AND GRAY		_	
4		Split Samples Yes No X		
And	FINE SAND	Recipient	_	
an an an an an an an an an an an an an a			_	
		Comments Subsurface soil samples		
40-11-11-11-11-11-11-11-11-11-11-11-11-11		from boring 10 - 25' analyzed for		
	·. !	HSL compounds.	_	
	1		_	
	.1			
	. }	REMARKS		
45-	1	Ground elev. 408.28	_	
			_	
4	•			
4	ì		_	
4	1		_	
60-	_ \$			

Site Dead Creek Site-H	Boring/Well No.	H-4
------------------------	-----------------	-----

Sample Depth	Slow Count	Description
1 - 2.5	6-9-12	FILL consisting of black silty CLAY and cinders, brick fragments, and medium grain sand. Dry.
3.5 - 5	2-3-10	FILL consisting of black very sandy CLAY. Some slag and black staining. Moist.
6 - 7.5	6-13-15	6-7' FILL same as above, 7-7.5' WASTE Very heavy black oil or tar like staining (approximately 3 inches thick)
8.5 - 10	4-5-2	$\frac{8.5-9}{9-10}$ FILL consisting of brown silty CLAY. $\frac{9-10}{9-10}$ WASTE Black (heavily stained) sludge-like material with a trace of flecks. Very moist.
11 - 12.5	2-3-2	WASTE black sludge. Wet.
13.5 - 15	3-2-2	WASTE same as above, including hard small spherical beads ($1/8^{\circ}$ dia.), and paper products. Wet with a visible oily sheen.
16 - 17.5	2-2-2	WASTE same as above, including granular material and broken glass fragments. (Some of the glass fragments appeared to have a threaded top such as a sample jar). Wet.
18.5 - 20	3-4-5	WASTE same as above, including a greenish-yellow jelly like material. Wet with an oil or tar like substance adhering to the spoon.
21 - 22.5	9-16-11	WASTE same as above, including a white granular material veined with brownish-red, glass fragments, and burnt wood. Wet.
23.5 - 25	2-2-15	WASTE consisting of multi-colored (red, green, brown, black, and white) materials; including a chunk of a waxy white substance that breaks into flakes.
		WASTE discontinues @ approx. 26'.
26 - 27.5	10-15-17	Firm brownish-gray fine grain SAND. Some silt. Wet. Very clayey @ 26'-26.5'.
28.5 - 30	1-1-1	Very loose brown fine grain SAND. Trace of medium to coarse grain sand. Very well sorted. Wet.

					 					 _
Site	Dead	Creek	Site-H			Boring/Well	No.	н-4	cont.	 _

Sample Depti	b Blow Count	Description
31 - 32.5	3-5-7	Firm brown fine grain SAND. Trace of medium grain sand. Well sorted and well rounded. Some gray staining @ 31'-31.5'.
33.5 - 35	6-7-13	Firm gray very silty fine grain SAND. Some black banding θ 34 to 35'. Wet.
36 - 37.5	8-12-18	Dense gray fine grain SAND. Well rounded and well sorted. Wet.
38.5 - 40	9-14-20	Dense gray fine grain SAND; little silt. Well sorted and well rounded. Wet. 2-inch poorly sorted fine to coarse grain SAND. Seam @ 39.5'. Trace of small gravel.
41 - 42.5	9-12-16	Dense gray fine to coarse grain SAND. Well rounded. Wet.
43.5 - 45	8-9-10	Firm gray fine grain SAND. Wet.
46 - 47.5	9-12-14	Same as above.
48.5 - 50	14-17-25	Same as above.
		E.O.B. @ 50'

Pandant Mana Band Creat		
Project Name Dead Creek Project No. IL 3140		Boring/Well No. H-5
Date Prepared 1-7-87		Location Site H Owner IEPA
Prepared by Kevin Phillips		Top of Inner Casing Elev. NA
		Drilling Firm Fox drilling
Depth (ft) Descri	ption	Driller Jerry Hammon
•	•	Start & Completion Dates 1/7 & 1/7/87
		Type of Rig Mobile B-61
H - 5		
•		Method of Drilling 3 3/4" I.D.
	1	hollow stem augers
-1		WELL DATA
- #XXXXXXXXXXXXXXXXXXXXXXXXXXX	1	Hole Diam. 8 in.
		Boring Depth 27.5 ft.
s- - \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Casing and Screen Diam.
- / ///////////////////////////////////		Screen Interval
-₩₩₩₩₩₩₩		Screen Type
-!?????????????		Stickup
_10000000000000000000000000000000000000		Well Type
10-XXXXXXXXXXXXXXXXXXXXX	FILL	Well Construction:
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		Filter Pack
		Seal
		Grout
CANDON ASSESSMENT		Lock No.
		TEST DATA
15-13-13-13-13-13-13-13-13-13-13-13-13-13-		
	WASTE	Static Water Elev Date
		Static Water Elev Date
The state of the s		Slug Test Yes No No
	GRAY SILTY CLAY	Test Date
20-6-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	GHAY SILIY CLAY	Hydraulic Conductivity
		Other
	GRAY SANDY SILT	
	GRAT SANDT SILI	WARRA CHALLER
		WATER QUALITY
25—	·	Samples Taken Yes No_X
	GRAY FINE SAND	No. of Samples
		Types of Samples
		•
		Date Sampled
		Samplers
		Samples Analyzed for
		Split Samples Yes No X
		Recipient
		Comments Subsurface soil samples
		from boring 0 - 10' analyzed for
		HSL compounds.
		POM1178
		REMARKS
		Ground elev. 409.75

Site Dead Creek Site-H	Boring/Well Ho.	н-5
	·	

Sample Dept	h Blow Coun	t Description
1 - 2.5	5-9-14	FILL consisting of brown silty CLAY including cinders, medium grain sand, and brick fragments. Dry.
3.5 - 5	3-4-6	FILL consisting of firm gray clayey SILT. Trace of small gravel and fine grain sand. Moist.
6 - 7.5	1-3-3	FILL same as above. Mottled with black silt. Moist.
8.5 - 10	7-8-10	FILL black cinders and small to medium gravel. Dry.
11 - 12.5	1-5-4	FILL same as above. (water @ approx. 12')
13.5 - 15	9-17-20	WASTE consisting of vario: debris materials, rubber, paper, and cloth products.
16 - 17.5	6-4-1	No recovery - probably same as above. Fill discontinues @ approx. 18'.
18.5 - 20	1-2-1	Soft gray very silty CLAY. Little fine grain sand. Moist.
21 - 22.5	2-1-4	Loose gray very sandy SILT. Some fine grain sand. Wet.
23.5 - 25	3-2-3	Same as above.
26 - 27.5	1-1-2	Loose gray fine grain SAND. Trace of silt. Well sorted. Wet.

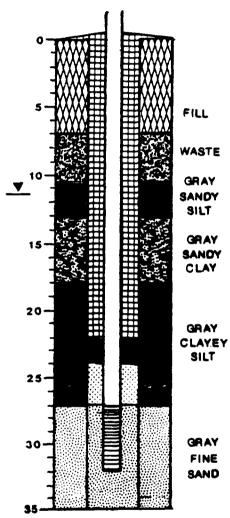
Droject Name Dead Creek		Boring/Well No. H-6
Project Name Dead Creek Project No. IL 3140	- to the state of	Location Site H
Date Prepared 1-7-87		Owner IEPA
Prepared by Kevin Phillips		
tebeted by Kealu Builtibs		Top of Inner Casing Elev. NA
Depth (ft) Descr		Drilling Firm Fox drilling
Depth (ft) H - 6 Descr	101100	Driller Jerry Hammon
		Start & Completion Dates 1/7 & 1/7/87
		Type of Rig Mobile B-61
° ¬ / ///////////////	¥	
7 YYYYYYYYYYYYYYY	4	Method of Drilling 3 3/4" I.D. hollow
- ! YYYYYYYYYYYYYYYY	Y	stem augers and rotary
-! ???????????????????	() FILL	
_IYYYYYYYYYYYYYYYYY	A LIFE	WELL DATA
<u></u>	/1	
3 1111111111111	Y	Hole Diam. 8 in.
		Boring Depth 50.0 ft.
	3	Casing and Screen Diam.
-1266	<u>a</u>	Screen Interval
	4	Screen Type
	•	
10-2-63-2-8-00	री	Well Type
ROLL STATE OF THE		Well Construction:
	ģ	Filter Pack
	*	Seal
		Grout Lock No.
		Lock No.
15-13-13-13-13-13-13-13-13-13-13-13-13-13-	WASTE	
	9	TEST DATA
120001-101-01-01-01-01-01-01-01-01-01-01-0	1	
		Static Water Elev Date
	2	Static Water Elev. Date
	<u>3</u>	Slug Test Yes No
20-20-20-20-20-20-20-20-20-20-20-20-20-2	3	Slug Test Yes No No No
	2	Hydraulic Conductivity
		other
		
25-14-13-14-1	jį	
		WATER QUALITY
	3	water Angers
发展工程工程	GRAY SILTY CLAY	Samples Taken Yes No_X
	4	No. of Samples
		Types of Samples
30—		Tipes of Stables
	:}	
		Date Sampled
		Samplers
	<u>:</u>	Samples Analyzed for
35—1000000000000000000000000000000000000	:[
	<u> </u>	
	1	Split Samples Yes No X
	:	Recipient 105
	GRAY FINE SAND	Recipient
	GRAT FIRE SAND	Comments Subsurface soil samples
40-100000000000000000000000000000000000	;	
	:	from boring 35 - 50' analyzed for
	1	HSL compounds.
	.	
	3	REMARKS
45 → 	1	Ground elev. 408.19
	3	
	1	
	1	
	1	
	1	
50	4	

I :: 1.

Site Dead Creek Site-H Boring/Well No. H-6

Sample Depth	Blow Count	Description
1 - 2.5	6-14-5	FILL 0-1.5 Black cinders, coarse grain sand and small gravel. 1.5-2.5 Brown silty CLAY. Some small gravel, black cinders, and brick fragments.
3.5 - 5	5-7-10	FILL consisting of dark brown coarse grain SAND and small gravel. Dry.
6 - 7.5	5-9-5	WASTE consisting of black-brown clayey SAND. Some small to large gravel. Also includes a black flaky substance. Moist.
8.5 10	11-16-12	WASTE 8.5-9.5 Black oil or tar-like stained sludge including a black flaky substance as above. 9.5-10 Brown and black coarse grain SAND and small gravel. Some black flaky material as above.
11 - 12.5	4-3-2	WASTE 11-11.5 Yellowish-brown chunky waste. Very moist. 11.5-12.5 Coarse grain SAND and small gravel. Stained black with viscous liquid. Very moist.
		Water € 13'.
13.5 - 15	5-4-3	WASTE consisting of sand and gravel with various debris materials including paper and cloth products and black stained wood chips.
16 - 17.5	3-2-2	WASTE same as above.
18.5 - 20	2-1-3	WASTE consisting of brown-black stained sludge including small hard spherical beads $(-1/8^{\prime\prime\prime}\ dis.)$ and wood chips. Wet.
21 - 22.5	1-1-4	WASTE consisting of dark gray sludge with a soft and sticky red substance throughout; (turns hexane green).
23.5 - 25	3-3-5	WASTE same as above; with small spherical beads and more red substance. Fill discontinues @ approx. 26'.
26 - 27.5	1-1-1	Soft gray very silty CLAY. Black stains and streaks. Wet.
28.5 - 30	2-4-7	Firm gray fine grain SAND. Well rounded and sorted. Top 6 inches stained dark gray. Wet.

Site Dead Cr	eek Site-H	Boring/Well No. H-6 cont.
Sample Depth	Blow Count	Description
5 foot sampl		
interval fro	n m	
30'.		
33.5 - 35	9-12-18	Same as above.
38.5 - 40	12-20-24	Gray very dense fine to coarse grain SAND. Wet.
43.5 - 45	15-22-28	Light gray very dense fine grain SAND. Trace of silt. Well sorted. Wet.
48.5 - 50	10-10-17	Same as above.
		E.O.B. @ 50'.


Project Name Dead Creek		Boring/Well No. H-7
Project No. IL 3140		Location Site H
Date Prepared 1-8-87		Owner IEPA
Prepared by Kevin Phillips		Top of Inner Casing Elev. NA
	···	Drilling Firm Fox drilling
Depth (ft) Descr	iption	Driller Jerry Hammon
H - 7	-	Start & Completion Dates 1/8 & 1/8/87
·		Type of Rig Mobile B-61
0	. 4	
-------------	MI .	Method of Drilling 3 3/4" I.D.
! //////////	M FILL	hollow stem augers, Rotary
1 ************************************	γı · ··~	
		WELL DATA
5-12-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	2	Hole Diam. 8 in.
	副	Boring Depth 50.0 ft.
E 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	.	Casing and Screen Diam.
	된	Screen Interval
	E OBAY OUTY CLAY	Screen Type
10000000000000000000000000000000000000	GRAY SILTY CLAY	Stickup
10-12-3	뒴	Well Type
报文	2	Well Construction:
	3	Filter Pack
F-1-3-1-1		Seal
	3	Seal Grout Lock No.
	.1	Lock No.
<u> </u>	<u> </u>	
		TEST DATA
	÷	Static Water Elev. Date Static Water Elev. Date
	8	Static Water Elev. Date
20-		Slug Test Yes No No
		Test Date
	2	Hydraulic Conductivity
7	X	Other
25-		
-		WATER QUALITY
	4	Samples Taken Yes No X
		No. of Samples
]	BROWN AND GRAY	Types of Samples
30-		
	FINE - MED SAND	Date Sampled
		Samplers
		Samples Analyzed for
		Samples Ameryzed tot
35-4		
	Ŕ	Split Samples Yes No X
		Recipient
		Comments No subsurface soil samples
40-		analyzed.
	1	remares
		Ground elev. 410.66
45-	Ä	Groding Bier. 410.00
-		
-		
	3	
50	<u> </u>	

Site	Dead	Creek	Site-H	

Boring/Well No. H-7

Sample Depth B	low Count	Description
1 - 2.5	12-14-16	FILL consisting of black silty CLAY with crushed limestone and brick fragments. Dry. Fill discontinues @ approx. 3'.
3.5 - 5	2-4-5	Gray stiff very silty CLAY. Trace of fine grain sand. Moist. Chemical odor.
6 - 7.5	3-2-3	Same as above. Some black and dark gray staining. Gasoline odor.
8.5 - 10	3-4-6	Same as above. No staining. Slight odor.
11 - 12.5	2-3-4	Brown and gray (mottled) firm very silty CLAY. Occasional silt string- ers. Moist. No odor.
13.5 - 15	3-3-4	Same as above. Water @ 15.5'.
16 - 17.5	1-1-2	Brownish-gray loose fine grain SAND. Some silt. Occasional iron stained pockets. Wet.
18.5 - 20	1-1-5	Brown loose fine to medium grain SAND. Trace of silt. Well sorted and rounded. Wet. Start sampling interval @ 20'.
23.5 - 25	3-8-14	Reddish-brown dense coarse grain SAND. Trace of small gravel. Some fine to medium grain sand. Poorly sorted and well rounded. Black stained sand seam (2") @ 24.5'. Wet.
28.5 - 30	7-9-13	Grayish-brown dense fine to medium grain SAND. Well rounded and sorted. Wet.
33.5 - 35	12-12-14	Brown dense fine grain SAND. Trace of medium grain sand. Well sorted and rounded. Wet.
38.5 - 40	8-12-20	Gray very dense fine grain SAND. Occasional natural organic layers. Wet.
43.5 - 45	10-25-30	Natural wood. (apparently drill and sample a buried tree # 43')
48.5 - 50	7-9-7	Gray firm fine to coarse grain SAND. Rounded, wet.
		E.O.B. @ 50'

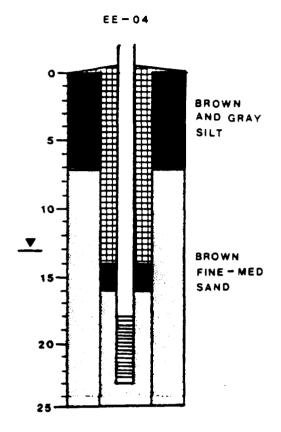
Project Name Dead Creek
Project No. IL 3140
Date Prepared 1-12-87
Prepared by Kevin Phillips
Depth (ft) Description

Boring/Well No. H-8/EE-03
Location Site H
Owner IEPA
Top of Inner Casing Elev. 411.47
Drilling firm Fox drilling
Driller Jerry Hammon
Driller Jerry Hammon Start & Completion Dates 1/9 & 1/12/87
Type of Rig Mobile B-61
Method of Drilling 3 3/4" I.D.
hollow stem augers
WELL DATA
Hole Diam. 8 in. Boring Depth 35.0 ft.
Boring Depth 35.0 ft.
Casing and Screen Diam. 2 in.
Screen Interval 27 - 32 ft. Screen Type stainless steel 0.01" slot
Stickup 2 16
Well Type monitoring
Well Construction:
Filter Pack 32 - 24 ft. Seal 24 - 22 ft.
Seel 24 - 22 ft.
Grout 22 ft. to surface
Grout 22 ft. to surface Lock No. 2834
TEST DATA
Static Water Flow 384 74 Date 1-26-87
Static Water Elev. 394.74 Date 3-26-87 Static Water Elev. 398.72 Date 5-11-87
Slug Test Yes X No
Test Date 5-11-87
Hydraulic Conductivity 10 x 10°3 cm/sec
OtherpH = 7.3
Other pH = 7.3 Cond. = 2800 umhos Temp. = 56° F
Yellowish
WATER QUALITY
Samples Taken Yes X No No. of Samples 1 round
Types of Samples groundwater
Date Sampled 3-17-27
Date Sampled 3-17-87 Samplers E & E
Samples Analyzed for HSL compounds
dulib familia
Split Samples Yes No X Recipient
VACTATABLE
Comments Subsurface soil samples
from boring 5 - 15' analyzed for
HSL compounds.
B. State 2. of 5
REMARKS
Slight organic odor

Site Dead Creek Site-H	Boring/Well No. H-8/well #EE-03

Sample Depth	Blow Coun	Description	
		0-1.5 Black cinders	
1 - 2.5	4-5-7	1.5-2.5 Brown and gray silty CLAY. Trace of small gravel, brick, and concrete fragments.	
3.5 - 5	4-5-1	FILL same as above.	
6 - 7.5	8-12-11	FILL consisting of black and gray silty CLAY (possibly stained). 2 inches of black granular material and small spherical beads θ 7'. WASTE (moist)	
8.5 - 10	30/2	WASTE - no recovery (rod bounced, probably rubber material).	
		Water € 11' while drilling.	
11 - 12.5	1-1-1	Gray very sandy SILT. Some fine grain sand. Wet. Slight chemical odor	
13.5 - 15	2-3-5	Gray firm very sandy silty CLAY. Some fine grain sand and silt. Horizontally bedded and slightly varved. Occasional fractures containing iron-like staining. Moist.	
16 - 17.5	1-2-3	Same as above: bedding is $1/8$ " to $1/4$ " thick. Occasional fractures and root trails or burrows.	
18.5 - 20	1-1-1	Gray loose very clayey SILT, some fine grain sand. No bedding. Wet.	
21 - 22.5	1-2-3	Same as above; slightly bedded { 1/8"} and slightly varved.	
23.5 - 25	1-1-1	Same as above.	
26 - 27.5	3-4-7	Same as above. (Fine grain sand in tip of spoon).	
28.5 - 30	6-6-10	From 27' dark gray fine grain SAND. Wet. Slight chemical odor.	
33.5 -35	3-9-9	Firm gray fine to coarse grain SAND. Wet. Well rounded.	
		E.O.B. @ 35'	

 Project Name
 Dead Creek


 Project No.
 IL 3140

 Date Prepared
 1-13-87

 Prepared by
 Kevin Phillips

Depth (ft)

Description

Boring/Well No. H-9/EE-04
Location Site H
Owner IEPA
Top of Inner Casing Elev. 413.26
Drilling Firm Fox drilling
Driller Jerry Hammon Start & Completion Dates 1/13, 1/13/87
Start & Completion Dates 1/13, 1/13/87
Type of Rig Mobile B-61
Method of Drilling 3 3/4" I.D.
hollow stem augers
WELL DATA

Hole Diam. 8 in.
Boring Denth 25 ft
Casing and Screen Diam. 2 in.
Screen Interval 18 - 23 ft.
Screen Type stainless steel 0.01" slot
Stickup 1.93 ft.
Well Type monitoring
Well Construction:
Filter Pack 23 - 16 ft. Seal 16 - 14 ft.
Seal 16 - 14 ft.
Grout 14 ft. to surface Lock No. 2834
LOCK NO
TEST DATA
Static Water Elev. 398.07 Date 3-26-87
Static Water Elev. 398.07 Date $3-26-87$ Static Water Elev. 399.01 Date $5-11-87$
Slug Test Yes X No
Test Date 5-12-87
Hydraulic Conductivity 5.2 x 10 cm/sec
Other pH = 7.2
Cond. = 2000 umhos Temp. = 58° F
Cond. = 2000 umhos Temp. = 58° F Clear-yellow
Cond. = 2000 umhos Temp. = 58° F
Cond. = 2000 umhos Temp. = 58° F
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds
Cond. = 2000 umhos Temp. = 58° F Clear-yellow
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments Subsurface soil sample
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments Subsurface soil sample
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No_ No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes_ No_X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed for HSL organics
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No_ No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes_ No_X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed for HSL organics
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No_ No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes_ No_X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed for HSL organics
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No_ No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes_ No_X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed for HSL organics
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No_ No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes_ No_X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed for HSL organics
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No_ No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes_ No_X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed for HSL organics
Cond. = 2000 umhos Temp. = 58° F Clear-yellow WATER QUALITY Samples Taken Yes_X No_ No. of Samples 1 round Types of Samples groundwater Date Sampled 3-17-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes_ No_X Recipient Comments Subsurface soil sample from boring from 15 - 25' analyzed for HSL organics

Site Dead Creek Site-H		Boring/Well No. H-9/well #EE-04
Sample Depth	a Blow Count	Description
1 - 2.5	5-5-3	0-2' Firm brownish-gray clayey SILT. Trace of fine grain sand. Moist. 2-2.5' Firm brown sandy SILT. Some fine grain sand. Dry.
3.5 - 5	3-4-6	Stiff brown and gray (mottled) very silty CLAY. Trace of fine grain sand. Occasional clayey silt layers (2"). Moist.
6 - 7.5	3-5-8	Same as above; becomes increasingly siltier at 7' then grades into brown very fine SAND at $7.1/4$ '. Trace of silt. Dry.
8.5 - 10	3-5-7	Brown very fine grain SAND. Trace of silt. Dry.
11 - 12.5	2-2-5	Same as above; a 4 inch silty clay layer appears at 12'. Trace of fine grain sand.
13.5 - 15	2-6-8	Brown fine grain SAND. Wet.
16 - 17.5	2-6-7	Brown fine grain SAND. Some medium grain sand. Wet.
18.5 - 20	1-1-3	Brown medium grain SAND. Trace of coarse grain sand. Wet.
23.5 - 25	7-14-11	Brown medium grain SAND. Trace of coarse grain sand and small gravel.

 Project Name
 Dead Cree

 Project No.
 IL 3140

 Date Prepared
 1-28-87

 Prepared by
 Tim Maley
 Dead Creek Top of Inner Casing Elev. 409.16 Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 1/27-1/28/87 Depth (ft) Description Type of Rig Mobile 8-61 EE-12 Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary WELL DATA Hole Diam. 8 in.
Boring Depth 33.5 ft. FILL Casing and Screen Diam. 2 in. Screen Interval 28 - 33 ft. Screen Type stainless steel 0.0 slot Stickup 0.52 ft.
Well Type monitoring
Well Construction: Filter Pack 33 - 25 ft. Natural
Seal 25 - 23 ft.
Grout 23 ft. to surface 10 Lock No. 2834 WASTE TEST DATA Static Water Elev. 397.43 Date 3-26-87 Static Water Elev. 398.65 Date 5-11-87 Slug Test Yes Test Date Hydraulic Conductivity Other pH = 7.4Cond. = 3200 unhos Temp. = 58° F 20 DARK GRAY FINE SAND WATER QUALITY Samples Taken Yes_X DARK GRAY No. of Samples 1 round SILTY CLAY Types of Samples groundwater Date Sampled 3-23-87
Samplers E 6 E DARK GRAY Samples Analyzed for HSL compounds FINE - CRS 30 SAND Split Samples Yes X 33 Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 0 - 10' analysed for HSL compounds. REPLAKES Duplicate of DC-GW-24

: 1

Site Dead Creek Site-I	Boring/Well No. I-1/Well # EE-12	

Sample Depti	h Blow Coun	t Description
		Crushed limestone and gravel on surface - parking lot for semi-trailers.
1 - 2.5	5-6-7	FILL consisting of brown-black sandy CLAY including a mixture of asphalt, fine to coarse grain sand, large gravel, and slag. Dry.
3.5 - 5	3-4-6	WASTE consisting of brown-black gravelly SAND including slag, stained paper and wood products, and a white gravelly substance. Dry.
6 - 7.5	3-5-4	WASTE. Same as above; with more slag and small spherical beads. Dry.
8.5 - 10	7-2-1	WASTE - poor recovery; probably same as above.
11 - 12.5	4-2-1	WASTE - same as above; wet.
13.5 - 15	7-10-14	WASTE consisting of black (oily stained) sludge-like material including wood chips, coarse grain sand, and concrete fragments. Wet.
16 - 17.5	1-3-4	WASTE. Same as above; with brick and concrete fragments, sand and gravel, and soft clay. Wet.
18.5 - 20	4-3-1	WASTE. Same as above. Fill material discontinues @ 21'.
21 - 22.5	0-0-2	21-22' Dark gray fine grain SAND. Some black staining. Wet. 22-22.5 Dark gray silty CLAY. Moist.
23.5 - 25	2-2-2	Dark gray silty CLAY. Moist.
26 - 27.5	0-0-1	Dark gray to black fine grain SAND. Trace of silt and medium grain SAND. Wet.
28.5 - 30	6-8-10	Dark gray medium to coarse grain SAND. Wet.
31 - 32.5	7-8-9	Same as above; with a trace of small gravel. Wet.
		E.O.B. @ 33.5°

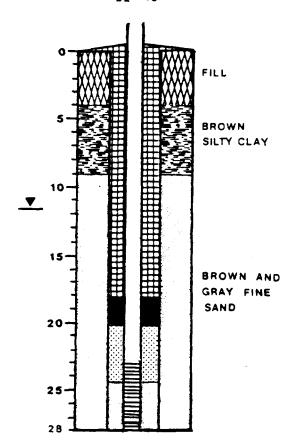
		
Project Name Dead Creek		Boring/Well No. <u>I-2</u>
Project No. IL 3140	-,	Location Site I
Date Prepared 1-28-87		Owner IEPA
Prepared by Tim Maley		
rispeted by		Top of Inner Casing Elev. NA
Depth (ft) Descri	ntion.	Drilling Firm Fox drilling
bepen (ic) beset	iption	Driller <u>Jerry Hammon</u> Start & Completion Dates 1/28, 1/28/87
		Start & Completion Dates 1/28, 1/28/87
		Type of Rig Mobile 8-61
1 - 2		
		Method of Drilling 3 3/4" I.D. hollow
Q —VYVVVVVVVVVVVVVVVV	•	stem augers and rotary
100000000000000000000000000000000000000	i.	
MANAAAAAAAAAAAAA		WELL DATA
700000000000000000000000000000000000000	4	
-1	FILL	Hole Diam. 8 in.
- ************************************		Boring Depth 40 ft.
s-HWWWWWWWW]	Casing and Screen Diam.
4		Screen Interval
_!^^^^^	ì	Screen type
		Stickup
		Well Type
		Well Type Well Construction:
▼ 10 一位经验的证据		LITCAL MECK
		Seal
		diedi
		Lock No.
	14/4.075	TEST DATA
15-27-27-27	WASTE	
- 37 2 3 3 3 3 3		Static Water Elev. Date
		Static Water Elev. Date
		Slug Test Yes No No
		Test Date
		Hydraulic Conductivity
20		Other
"你不是我们的,我们就是我们的	i	
-25.CEO.		
⊣		WATER QUALITY
25—	BLACK AND GRAY SILT	
23		Samples Taken Yes No X
7		No. of Samples
4		Types of Samples
-		
4		
30-		Date Sampled
4		Samplers
	i	Samples Analyzed for
7	GRAY FINE SAND	
7	CITAL LINE OFFICE	
	•	malib farming (sail) Yes Y
35—		Split Samples(soil)Yes X No Recipient Sverdrup, Inc. for Cerro
4		
4	1	Copper
		Comments Subsurface soil samples
	§	from boring 5 - 25' analyzed for
	1	
40	4	HSL compounds.
		REMARKS
		Ground elev. 409.98
		GLOUING TIEV. 107.70

Site Dead Creek Site-I	Boring/Well Ro. I-2

Sample Depth	Blow Count	Description
		Crushed limestone parking lot surface.
1 - 2.5	3-6-9	FILL consisting of black sandy CLAY including a mixture of fine-medium grain sand, asphalt, cinders, gravel, and slag. Dry.
3.5 - 5	1-1-2	FILL - same as above.
6 - 7.5	3-6-4	FILL consisting of black-brown silty CLAY. Trace of fine grain sand (in seams) θ 7'. Including some slag and wood particles. Dry.
8.5 - 10	3-2-2	WASTE consisting of light brown silty CLAY (to 9') including very loose black cinder material and medium grain sand. Dry.
11 - 12.5	51-11/1	WASTE - spoon refusal - probably a large obstruction in fill material. Wet.
13.5 - 15	2-2-2	WASTE consisting of black oily stained sludge-like material. Including fine to coarse grain sand, cinders, clay, and stained wood. Wet (with oily sheen).
16 - 17.5	16-7-6	WASTE. Same as above; with more wood particles.
18.5 - 20	0-1-2	WASTE - poor recovery - probably same material.
21 - 22.5	7-8-10	WASTE - same as above.
		Fill discontinues @ approx. 23.5'.
23.5 - 25	4-6-8	Black (stained) and gray SILT. Some very fine grain sand. Wet (with oily sheen).
26 - 27.5	2-3-2	Gray fine grain SAND. Some black staining. Wet.
28.5 - 30	9-7-3	Same as above.
31 - 32.5	11-11-11	Gray fine grain SAND. Interbedding of finer silty sand and coarser sand with small gravel; (approx. 4 inch layers). Wet.
33.5 - 35	5-10-12	Same as above.

Site Dead Creek Site-I			Boring/Well No. I-2 (cont.)	
Sample Depth Blow Count			Description	
	1 1	Same as above.		
38.5 - 40	11-24-37	Same as above.		
		E.O.B @ 40'		

Project NameDead Creek		Bandan Mall Wa
Project No. IL 3140		Boring/Well No. I-3 Location Site I
Date Prepared 1-29-87		Owner IEPA
Prepared by Tim Maley	··	Top of Inner Casing Elev. NA
	· · · · · · · · · · · · · · · · · · ·	Drilling Firm Fox drilling
Depth (ft) Descript	ion	Driller Jerry Hammon
•		Start & Completion Dates 1/29, 1/29/67
		Type of Rig Mobile B-61
I – 3		-180 00 1114
, ,		Method of Drilling 3 3/4" I.D.
		hollow stem augers
**************************************		WELL DATA
	FILL	M-1- 64- 6-4-
	riu.	Hole Diam. 8 in. Boring Depth 30.0 ft.
_ 1		Caring and Screen Dies
5-1		Casing and Screen Diam.
First American		Screen Interval Screen Type
		Stickup
		Well Type
		Well Construction:
10		Filter Pack
		Seal
	DARK GRAY SILTY CLAY	91090
	DAIN GHA! SIE! I CEAT	Lock No.
		TEST DATA
15 12 2 2 3		Static Water Elev Date
		Static Water Elev Date
▼ 13.33		Slug Test Yes No
		
on the state of t		Test Date Hydraulic Conductivity
20-		Other
	•	
	BROWN AND GRAY	
	VERY FINE SAND	
		WATER QUALITY
25-	•	Samples Taken Yes No X
7		No. of Samples
1 1		Types of Samples
1 1		
1 1		Date Sampled
30		Samplers
		Samples Analyzed for
		Split Samples(soil)Yes X No
		Recipient Sverdrup, Inc. for Cerro
		Copper
		from boring 5 - 15' analyzed for
		HSL compounds.
		REMARKS
		-


Site Dead Creek Site-I	Boring/Well No. I-3

Sample Depth Blow Count		Description	
		Crushed limestone parking lot surface.	
- 2.5	6-21-19	FILL consisting of brown and black sandy CLAY including crushed lime stone, small to medium gravel and slag material. Dry.	
.5 - 5	i-11-5	FILL - same as above; with some wood chips.	
		Fill discontinues @ approx. 6'.	
- 7.5	2-3-4	Dark gray silty CLAY. Trace of fine grain sand.	
.5 - 10	1-2-3	Same as above; some rust color staining.	
1 - 12.5	1-2-2	Same as above; mottled brown & gray.	
3.5 - 15	2-3-2	Same as above.	
.6 - 17.5	1-2-3	Same as above.	
		Water @ 18'.	
18.5 - 20	1-1-3	Brown very fine grain SAND. Some silt, thinnly bedded. Wet.	
21 - 22.5	2-3-3	Gray very fine grain SAND. Wet.	
23.5 - 25	1-2-2	Same as above.	
26 - 27.5	1-2-3	Same as above.	
8.5 - 30	0-1-3	Same as above.	
		E.O.B. @ 30'	

Depth (ft)

Description

EE - 13

8011ng/#011 No
Location Site I
Owner IEPA
OWNER TELY
Top of Inner Casing Elev. 409.16
Drilling Firm Fox drilling
Desiring title tox desiring
Driller Jerry Hammon Start & Completion Dates 1/29,1/29/87
Start & Completion Dates 1/29 1/29/87
<u> </u>
Type of Rig Mobile B-61
Method of Drilling 3 3/4" I.D.
hollow stem augers
WELL DATA
Hole Diam. 8 in. Boring Depth 28.0 ft.
Boring Death 28 0 44
Botting Depth 28.0 IC.
Casing and Screen Diam. 2 in.
Screen Interval 23 - 28 ft.
3014411 111041441 13 - 20 10.
Screen Type stainless steel 0.01" slot Stickup 0.52 ft.
Stickup 0.52 ft.
Mail Comments
Well Type monitoring
Well Construction:
Filton Back 38 30 fo
FILLET PECK
Filter Pack 28 - 20 ft. Seal 20 - 18 ft.
Grout 18 ft. to surface
Grout 18 ft. to surrace
Lock No. 2834
TEST DATA
Static Water Elev. 397.47 Date 3-26-87
Static Water Elev. 397.47 Date 3-26-87 Static Water Elev. 398.75 Date 5-11-87
3114
Slug Test Yes X No
Slug Test Yes X No
Mandaga Na and Anna Anna Anna Anna Anna Anna Anna
Hydrautic Conductivity 1.3 x 10 cm/sec
Test Date 5-12-87 Hydraulic Conductivity 1.3 x 10 cm/sec Other pH = 7.2
Abban
Other <u>pH = 7.2</u> Cond. = 1800 umhos Temp. = 56° F
Other <u>pH = 7.2</u> Cond. = 1800 umhos Temp. = 56° F
^*b
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish
Other <u>pH = 7.2</u> Cond. = 1800 umhos Temp. = 56° F
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish
other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round
Other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater
Other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87
Other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E
Other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87
Other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E
Other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E
Other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments
Cond. = 1800 umhos Temp. = 56° F Clear to yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments

Site Dead Creek Site-I

Boring/Well No. I-4/Well # EE-13

Sample Depth Blow Count		Description	
		Fill on surface.	
1 - 2.5	8-7-50	FILL consisting of brown and black sandy CLAY, including a mixture of crushed limestone, small to medium gravel, and concrete fragments.	
		Fill discontinues @ approx. 4'.	
3.5 - 5	3-4-4	From 4', brown very silty CLAY. Dry.	
6 - 7.5	3-4-5	Brown silty CLAY: to 9'.	
8.5 - 10	2-3-2	From 9', brown very fine grain SAND. Some silt. Thinly bedded. Water \emptyset 9.5'.	
11 - 12.5	1-3-2	Same as above.	
13.5 - 15	1-1-1	Same as above; some interbedding of siltier material. Wet.	
16 - 17.5	1-2-3	Same as above; to 19'.	
18.5 - 20	1-2-3	From 19', brown (turning gray) SILT. Wet.	
21 - 22.5	1-2-2	Gray fine grain SAND. Wet.	
23.5 - 25	0-1-0	Same as above.	
26 - 27.5	0-1-2	Same as above.	
		E.O.B. @ 28'	

Project Name D	ead Creek	Boring/Well No. I-5/EE-14	
Project Name Droject No. IL	3140	Location Site I	
Date Prepared _	1-30-87	Owner IEPA	
Prepared by Ti	m Maley	Top of Inner Casing Elev. 410.95	
D	B	Drilling Firm Fox drilling	
nebru (tr)	Description	Driller <u>Jerry Hammon</u> Start & Completion Dates 1/30, 1/30/87	
		Type of Rig Mobile B-61	
	EE - 14	Type of Kid	
	22 - 14	Method of Drilling 3 3/4" I.D.	
		hollow stem augers, Rotary	
] L	WELL DATA	
0 14444	#######################################	WELL UNIX	
-1XXXXX		Hole Diam. 8 in.	
-1,,,,,,,,	Ⅲ Ⅲ ₩₩	Boring Depth 37.5 ft.	
-	## ## WW	Casing and Screen Diam. 2 in.	
- I	## ## ₩₩1	Screen Interval 32.5 - 37.5 ft.	
5 WW	## ## # ####	Screen Type stainless steel 0.01" slot	
-	### ## K YYYY1	Stickup 1.56 ft.	
- / YYYY		Well Type monitoring	
_MYYY		Well Construction:	
-(XXXXX)		Filter Pack 37.5 - 30 ft. Natural Seal 30 - 28 ft.	
- TXXXXX	HH HEMWI FILL	Grout 28 ft. to surface	
10 [XXXXX)	HI HWW	Lock No. 2834	
▼]₩₩	## ## WW		
	## ## ////	TEST DATA	
		Static Water Elev. 397.23 Date 3-26-87	
15-0		Static Water Elev. 398.55 Date 5-11-87	
		Slug Test Yes No X	
		Test Date	
		Hydraulic Conductivity	
		other $pH = 7.4$	
20-20	WASTE	Cond. = 3400 umhos Temp. = 56° F Cloudy, yellowish	
		Cloudy, yellowish	
		WATER QUALITY	
	田井悠勢		
		Samples Taken Yes X No	
25-		No. of Samples 1 round	
2.5		Types of Samples groundwater	
	GRAY CLAY		
		Date Sampled 3-23-87	
		Samplers E & E	
I		Samples Analyzed for HSL compounds	
30-			
7	BROWN		
7	FINE - MED	-1/4 1	
7	SAND	Split Samples Yes X No	
		Copper	
35-			
		Comments Subsurface soil samples	
37.5	1460 9440 <u>11</u> 94444.	from boring 5' - 27.5 feet and	
		28.5 - 37.5 feet analyzed for HSL	
		compounds.	
		REMARKS	

Site Dead Creek Site-I

Boring/Well No. I-5/Well #EE-14

Sample Depth Blow Count		Description	
		Crushed limestone parking lot surface.	
1 - 2.5	24-00	FILL consisting of dark brown-black sandy CLAY including a mixture of fine to coarse grain sand, limestone fragments, clay, and concrete (large obstruction caused spoon refusal).	
3.5 - 5	4-6-8	FILL consisting of black-gray silty CLAY.	
6 - 7.5	11-14-8	FILL consisting of light gray-black sandy CLAY including crushed lime- stone, small to large gravel, fine to coarse grain sand, and wood chips. Dry.	
8.5 - 10	4-17-4	FILL - same as above; with some brick fragments.	
11 - 12.5	2-2-1	FILL consisting of gray silty CLAY. Some black staining, trace of fill debris including cloth products and cinders.	
13.5 - 15	2-2-3	WASTE consisting of black sandy CLAY including a mixture of cinders, slag, small to large gravel, and fine to coarse grain sand. (Moist)	
16 - 17.5	4-2-5	No recovery - probably same fill material. Water @ 17.5'.	
18.5 - 20	3-5-3	WASTE consisting of black sandy CLAY including some gravel and slag. We (with oily sheen).	
21 - 22.5	4-1-5	No recovery - probably same fill material.	
23.5 - 25	5-9-5	WASTE - same as above. Fill apparently discontinues @ approx. 26'.	
26 - 27.5	4-2-3	26-26 3/4' Black-gray-brown silty CLAY then black very fine grain SAND Some silt and black staining. Wet.	
28.5 - 30	3-4-3	Black very fine grain SAND. Stained. Wet. From 29-29 1/4' is a gray silty CLAY layer. Then brown fine grain SAND. Slightly stained. Wet. Trace of medium grain sand.	
31 - 32.5	2-4-2	Brown fine to medium grain SAND. Wet.	
36 - 37.5	8-16-24	Brown medium to coarse grain SAND. Trace of small gravel. Wet. Tip of spoon (37.5') showed dark gray very fine grain SAND. Trace of small gravel.	
		E.O.B. @ 37.5'	

				
Project Name _	Dead Creek		Boring/Well No. <u>I-6</u>	
Project No. 1	TT. 3140		Location Site I	
Date Prepared	2-2-87		Owner IEPA	
Prepared by1	Tim Maley		Top of Inner Casing Elev. NA	
			Drilling Firm Fox drilling	
Depth (ft)	Descrip	tion	Driller Jerry Hammon	
			Start & Completion Dates 2/2 & 2/2/87	
			Type of Rig Mobile 8-61	
	I – 6			
			Method of Drilling 3 3/4" I.D.	
0 -14444	*************		hollow stem augers	
1			WELL DATA	
-X XXX	KXXXXXXXXXXXXXXXXX		Hole Diam. 8 in.	
-1XXXX			Boring Depth 32.5 ft.	
s-WW	***************************************		Casing and Screen Diam.	
		FILL	Screen Interval	
3,434			Screen Type	
7			Stickup Well Type	
1,000			Well Type	
-₩₩			Well Construction:	
₩ 10 -₩	************************************		Filter Pack	
			Seal Grout Lock No	
- 632			Grout	
			Lock No.	
			TEST DATA	
12-12	工作的工作。			
ି ପ୍ର	公共2000	WASTE	Static Water Elev Date	
1339	公共	WASTE	Static Water Elev Date	
- 196-2			Slug Test Yes No	
- 332			Test Date	
20-66			Hydraulic Conductivity	
			Other	
7.5				
(A.C.)			WATER QUALITY	
25-			Samples Taken Yes No_X	
- 200		•	No of Samples	
			No. of Samples Types of Samples	
		BROWN FINE SAND		
30-			Date Sampled	
			Samples Analyzed for	
-				
	•			
			Split Samples(soil)Yes X No	
			Recipient Sverdrup, Inc. for Cerro	
			Copper	
			Comments Subsurface soil sample	
			from boring 10 - 25' analyzed for	
			HSL compounds.	
			REMARKS Ground elev. 408.30	
			GIOUNG SIEV. 408.30	
				

site	Dead Creek Site-I	Boring/Well No.	I-6
•			

: T

Sample Depth	Blow Count	Description
		Fill on surface.
1 - 2.5	24-12-14	FILL consisting of brown silty CLAY including a mixture of fine to coarse grain sand, gravel, and crushed limestone.
3.5 - 5	3-60/3	FILL - same as above. High blow count caused by brick obstruction.
6 - 7.5	3-10-10	FILL - same as above; with additional debris such as cardboard, cinders, and slag.
8.5 - 10	3-2-2	FILL - same as above; with increased amount of sand. Moist.
11 - 12.5	3-2-1	WASTE consisting of gray silty CLAY including black oily sludge, fine to coarse grain sand, gravel, brick fragments, and slag. Wet (with oily film).
13.5 - 15	1-1-2	WASTE consisting of black (heavily stained) sandy CLAY. Including black oily sludge, medium to coarse grain sand. Wood chips, cinders, and gravel. Wet.
16 - 17.5	2-3-4	WASTE - same as above.
18.5 - 20	2-7-8	WASTE - same as above, some black sludge or tar-like substance mixed with wood and cardboard.
21 - 22.5	11-11-10	WASTE consisted of various debris including black oily stained layered cardboard, paint pigments, burlap cloth, and a yellow sludge-like substance. Wet.
		WASTE discontinues @ approx. 24'.
23.5 - 25	10-11-12	From 24', brown (some black staining) fine grain SAND. Some silt. Wet.
26 - 27.5	4-4-5	Same as above. A 1/4° gray silty clay layer @ 26.5'.
28.5 - 30	0-1-1	Brown fine grain SAND. Some black staining. Wet.
31 - 32.5	10-13-18	Same as above.
		E.O.B. @ 32.5'

 Project Name
 Dead Cree

 Project No.
 IL 3140

 Date Prepared
 2-3-87

 Prepared by
 Tim Maley
 Boring/Well No. I-7/EE-15 Location Site I Owner IEPA Dead Creek Top of Inner Casing Elev. 406.41 Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 2/3/87,2/3/87 Depth (ft) Description Type of Rig Mobile B-61 EE-15 Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary WELL DATA Hole Diam. 8 in.

Boring Depth 30 ft.

Casing and Screen Diam. 2 in. Screen Interval 24 - 29 ft. Screen Type stainless steel 0.01" slot
Stickup 1.33 ft.
Well Type monitoring FILL Well Construction: Filter Pack 29 - 17 ft. Natural
Seal 17 - 15 ft.
Grout 15 ft. to surface
Lock No. 2834 10 DARK GRAY VERY FINE SAND. GRAY CLAY TEST DATA Static Water Elev. 397.63 Date 3-26-87 Static Water Elev. 398.93 Date 5-11-8715-Slug Test Yes X No Test Date 5-12-87

Hydraulic Conductivity 0.47 x10 cm/sec Other pH = 7.2 Cond. = 1800 umhos Temp. = 56° F BROWN AND GRAY 20-FINE SAND Yellowish WATER QUALITY Samples Taken Yes X No No. of Samples 1 round 25-Types of Samples groundwater Date Sampled 3-Samplers E & E 3-23-87 Samples Analyzed for HSL compounds 30 Split Samples Yes X Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet and 13.5 - 22.5 feet analyzed for HSL compounds. REMARKS Slight odor

Site Dead Creek Site-I Boring/Well No. I-7/Well #EE-15

Sample Depth	Blow Count	Description
		0-1 Black clayey topsoil
1 - 2.5	3-3-4	FILL consisting of brown-gray silty CLAY. Dry.
3.5 - 5	4-8-4	FILL consisting of brown-gray silty CLAY. Trace of fine grain sand and crushed limestone. Dry.
6 - 7.5	1-1-1	FILL - same as above. Moist.
8.5 - 10	3-4-8	FILL consisting of brown-gray-black silty CLAY. Some fine to medium grain sand and crushed limestone. Dry.
		Fill apparently discontinues @ approx. 11'.
11 - 12.5	1-3-4	11-12' Dark gray very fine grain SAND. Moist. 12-12.5 Soft gray silty CLAY. Moist. Water @ 13'.
13.5 - 15	1-3-	Brown fine grain SAND. Wet.
16 - 17.5	1-3-5	Same as above.
18.5 ~ 20	2-6-8	Same as above; slightly siltier.
21 - 22.5	12-15-15	Same as above; less silt.
23.5 - 25	5-6-12	Gray very fine grain SAND. Wet.
26 - 27.5	12-10-10	Same as above.
28.5 - 30	6-8-10	Same as above.
		E.O.B. @ 30'

Project Name Dec	ad Creek	(IEPA well replaced) Boring/Well No
Project No. IL		Location Site I
Date Prepared 2		Owner IEPA
Prepared by Tim	Maley	Top of Inner Casing Elev. 407.87
Depth (ft)	Description	Drilling Firm Fox drilling Driller Jerry Hammon
bepen (20)	243011pc1011	Start & Completion Dates 2/3/87,2/3/87
		Type of Rig Mobile B-61
E	E-G112	
		Method of Drilling 3 3/4" I.D.
	f 1	hollow stem augers
		WELL DATA
0 77777	######################################	
1	# 1##WWI	Hole Diam. 8 in.
- [XXXXX] E	∄ ∰WWI	Boring Depth 29.0 ft.
-XXXXXI #	# ## Y YYY Y	Casing and Screen Diam. 2 in.
1,000	H HHWW FILL	Screen Interval 21 - 26 ft. Screen Type stainless steel 0.01" slot
5 ─ ₩₩₩		Stickup 1.19 ft.
1,000,001	H ###XXXXI	Well Type monitoring
- T YYYY Y #	H	Well Construction:
-1 KXXXX I E	B ######	Filter Pack 26 - 16 ft. Natural
_ ▼	H ###WYY1	Seal 16 - 14 ft. Grout 14 ft. to surface
10 		Lock No. 2834
1000		
		TEST DATA
美里	GRAY CLAY	Static Water Elev. 397.00 Date 3-26-87
15	GRAY CLAY	Static Water Elev. 398.39 Date 5-11-87
		Slug Test Yes X No
	1 (3.3)	Test Date 5-12-87
		Hydraulic Conductivity 3.4 x 10 cm/sec Other ph = 7.6
4 1		Cond. = 1600 umhos Temp. = 58° F
20-		Yellowish, slight odor
	BROWN AND	
+ 1		WATER QUALITY
+ 1	GRAY FINE	Samples Taken Yes X No
4 1	SAND	No. of Samples 1 round
25		Types of Samples groundwater
1 1		
+ 1		Date Sampled 3-23-87
1 1		Samplers E & E
		Samples Analyzed for HSL compounds
		Split Samples Yes No X Recipient
		Comments
		REMARES

Site Deed Creek Site-I	Boring/Well No. I-6/Well #EE-Gil2 IEPA replacement well
Sample Depth Blow Count	Description
	Straight drill to 17.5'.
	Stratigraphic sequence based on auger cuttings.
	0'to 5' FILL consisting of brown fine to medium grain SAND including crushed limestone, gravel, and brick fragments.
	5'to 12' FILL consisting of black asphaltic sand and gravel including oily cinders and soft clay.
	Fill discontinues # approx. 13'.
	12' to 17' Gray silty clay.
	17'to 23' Brown to gray fine grain SAND. Some silt. Wet.
	23 to 27.5' Brown to gray medium grain SAND. Trace of small gravel.
	27.5' to 27 3/4' Gray silty clay. Moist.
	27 3/4' to 29' Gray fine grain SAND.

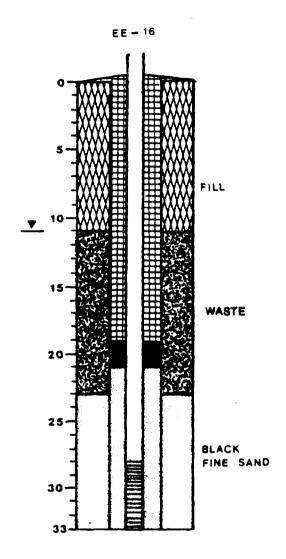
ples taken
for screen
placement.

27.5 - 29

17.5 - 19 2-3-4 Brown fine grain SAND. Wet.

22.5 - 24 4-5-7

Gray fine to medium grain SAND. Trace of coarse grain sand and small


4" gray silty clay layer on top of gray fine grain SAND. Wet.

E.O.B. @ 29'

Project Name	Dead Creek
Project No.	IL 3140
Date Prepared	2-4-87
Prepared by	Tim Maley

Depth (ft)

Description

Boring/Well No. I-9/EE-16
Boring/Well No. I-9/EE-16
Location Site I
Owner IEPA
Top of Inner Casing Elev. 408.65
top of liner casing blev. 405.65
Drilling Firm Fox drilling
Driller Jerry Hammon Start & Completion Dates 2/4/87,2/4/87
Stillet Stily Hemmon
Start & Completion Dates 2/4/87,2/4/87
Type of Rig Mobile B-61
Method of Drilling 3 3/4" I.D.
Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary
WELL DATA
Wala Diam & in
Hole Diam. 8 in.
Roring Depth 33 ft
Casing and Screen Diam. 2 in.
Annual to Annual
Screen Interval 28 - 33 ft.
Screen Type stainless steel 0.01 slot Stickup 1.74 ft.
Stickup 1 74 ft
Mall Burney
Well Type monitoring
Well Construction:
Filter Dack 33 - 31 ft Maturel
TALLE FEET 33 - 21 IC. NACUIEL
Pilter Pack 33 - 21 ft. Natural Seal 21 - 19 ft.
Grout 19 ft. to surface. Lock No. 2834
Lock No. 2834
200X NO. 2834
TEST DATA
Static Water Elev. 397.27 Date $3-26-87$ Static Water Elev. 398.56 Date $5-11-87$
Static Water Elev. 398.56 Date 5-11-67
Club Forth Von
Slug Test Yes No X
1986 Date
Hydraulic Conductivity
20 - 3 3
Other <u>pH = 7.2</u> Cond. = 3000 umhos Temp. = 58° F
Cond. = 3000 umhos Temp. = 58° F
Dark, cloudy, strong odor
WATER QUALITY
Camples Taken Ves V
Sembras regardu res Y 40
Samples Taken Yes X No
Types of Samples groundwater
••••
Date Sampled 3-23-86
Samplers E & E
Samples F F F
Samples Analyzed for HSL compounds

Split Samples Yes X No
Recipient Sverdrup, Inc. for Cerro
Copper
- -
Comments Subsurface soil samples
from boring 6.5 - 22.5 feet and
23.5 - 30' feet analyzed for HSL
compounds.
compounds.
compounds.

Site	Dead	Creek	Site-I	

Boring/Well No. I-9/Well #EE-16

Sample Depth Blow Count		Description		
	-	Fill materials on surface.		
1 - 2.5	5-8-10	FILL consisting of black clayey SAND and slag gravel. Dry.		
3.5 - 5	4-5-5	FILL - same as above.		
6 - 7.5	2-6-6	FILL consisting of black-brown sandy CLAY including a mixture of slag gravel, crushed limestone, and cinders. Dry.		
8.5 - 10	4-12-4	FILL - same as above; mostly slag gravel and cinders.		
11 - 12.5	2-3-2	WASTE consisting of black sandy oily stained sludge including a mixture of wood, cardboard, slag, and small spherical beads. Wet.		
13.5 - 15	4-10-19	WASTE - same as above. Wet.		
16 - 17.5	100/6	WASTE - no recovery; very difficult drilling due to large obstruction.		
18.5 - 20	6-12-9	WASTE - cuttings from large obstruction showed a hard rubber or graphite material.		
21 - 22.5	72-100/6	WASTE - no recovery; probably same fill materials. Fill appeared to dis- continue @ 23'.		
23.5 - 25	4-4-5	Black (stained) fine grain SAND. Wet (with oily sheen).		
26 - 27.5	5-6-12	Same as above, heavy oily staining.		
28.5 - 30	7-12-9	Same as above; with a trace of medium to coarse grain SAND.		
		E.O.B drill to 33'		

Project Name Dead Cree	k	Boring/Well No. I-10
Project No. IL 3140	······································	Location Site I
Date Prepared 2-4-87		Owner IEPA
Prepared by Tim Maley		Top of Inner Casing Elev. NA
· · · · · · · · · · · · · · · · · · ·		Drilling Firm Fox drilling
Depth (ft) D	escription	Driller Jerry Hemmon
		Start & Completion Dates 2/4 & 2/4/87
		Type of Rig Mobile B-61
I - 10		Mathed of Basilian 3 2/47 1 B
		Method of Drilling 3 3/4" I.D. hollow stem sugers
O TARARARAA	11111f	HOTTOW SCOR EUGOTS
1 ,	XXXXX	WELL DATA
-1 XXXXXXXXXXXXXXXX	XXXXXI	
-1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	XXXXI FILL	Hole Diam. 8 in.
-1 ^^^	WWW.	Boring Depth 30.0 ft.
5 —} ////////////////////////////////////	XXXXII	Casing and Screen Diam.
- ! ???????	WWM	Screen Interval
4	BROWN SILTY SAND	Screen Type
		Stickup
	BROWN SILTY CLAY	Well Type Well Construction:
10	33	Filter Pack
10		Seal
		Grout
<u> </u>	w veny	Lock No.
7	GRAY VERY	
7	FINE SAND	TEST DATA
15-	•	Static Water Elev Date
]		Static Water Elev Date
]		Sing Test Ves No
		Mark 2000
		Hydraulic Conductivity
20-		Other
		WATER QUALITY
7	BROWN FINE SAND	WATER GOADILL
25-	BHOWN FIRE SAND	Samples Taken YesNo_X
		No. of Samples
-		Types of Samples
-		
30	MANAGE CONTRACTOR OF THE CONTR	Date Sampled
		Samples Analyzed for
		Samples Analyted for
		Split Samples(soil)Yes X No
		Recipient Sverdrup, Inc. for Cerro
		Copper
		Comments Subsurface soil samples
		from boring 15 - 30' analyzed for
		HSL compounds.
	,	
		2011404
		REMARES Ground elev. 408.68
		3.00.00 4241. 130.00

			
5ite	Dead Creek Site-I	Boring/Well Ho.	1-10

Sample Depth Blow Co	nt Description
	FILL material on surface.
1 - 2.5	FILL consisting of black-brown sandy CLAY including a mixture of wood, slag gravel, crushed limestone, a yellow powdery substance, and brick fragments. Dry.
3.5 - 5 6-3-3	FILL - same as above.
	Fill discontinues @ approx. 6.5'.
6 - 7.5 2-2-2	From 6.5' - brown very fine silty SAND. Dry. Trace of clay 8 7.5'.
8.5 - 10 4-3-3	Brown silty CLAY. Trace of fine grain sand. Slightly mottled with gray stringers. Dry.
11 - 12.5 6-6-8	Gray very fine silty SAND. Moist.
13.5 - 15 3-3-6	Same as above. Wet.
16 - 17.5 3-7-9	Same as above. Less silty, wet.
18.5 - 20 2-5-7	Brown fine grain SAND. Black staining @ 19-19.5'. Wet.
21 - 22.5 6-9-5	Same as above. Becomes gray fine grain SAND.
23.5 - 25 6-9-13	Same as above. Black staining @ 24.5-25'.
26 - 27.5 7-11-1	Same as above. Black staining.
28.5 - 30 11-12-	Same as above.
	E.O.B. € 30'

Project Name Dead Cree	o ik	Boring/Well No. I-11
Project No. IL 3140		Location Site I
Project No. IL 3140 Date Prepared 2-5-87		Owner IEPA
Prepared by Tim Maley		Top of Inner Casing Elev. NA
		Drilling Firm Fox drilling
Depth (ft)	Description	Driller Jerry Hammon
•		Start & Completion Dates 2/5 & 2/5/87
		Type of Rig Mobile B-61
1 – 11		Method of Drilling3 3/4" I.D.
_		hollow stem augers, Rotary
	XXXXXII	
1 XXXXXXXXXXXXXX	XXXXXI	WELL DATA
	XXXXXII	
	WWW.	Hole Diam. 8 in.
-	XXXXII	Boring Depth 38.5 ft.
s – / / / / / / / / / / / / / / / / / /	YYYYI FILL	Casing and Screen Diam.
- ! \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	WWW ' 1522	Screen Interval
- ₩₩₩₩₩	////// 	Screen Type
_ I MMMMMYYY	/ /////¶	Stickup Well Type
I WWWWYYYYYY	YYYYYI	Well Type Well Construction:
	(<u> </u>	Filter Pack
V 10-	13.24514	Seal
		Seal Grout
		Lock No.
	G C S	
	200	TEST DATA
15-23-23		
	WASTE	Static Water Elev. Date Static Water Elev. Date
	ALC:	Static Water Elev Date
1255 X 1255		Slug Test Yes NoNo
		Test Date
	ST. SE	Hydraulic Conductivity
20-00-00		Other
	GRAY SILTY CLAY	WATER QUALITY
1	STATE OF THE STATE	
25-	10.444441 40.44444	Samples Taken Yes No_X
		No. of Samples
		Types of Samples
	0.000.00000 50.000.0000	
30-		Date Sampled
	BROWN AND DARK	Samplers
		Samples Analyzed for
	GRAY FINE SAND	
	Since GRAF FINE GAND	
	700 A 100 A	Split Samples(soil)Yes X No
35-		Recipient Sverdrup, Inc. for Cerro
		Copper
38.5		Comments Subsurface soil samples
00.0		from boring 6 - 20' & 26 - 38.5'
		analyzed for HSL compounds.
		remares
		Ground elev. 405.88
		4104114 4141, 147144

Site Dead Creek Site-I	Boring/Well No.	r-11

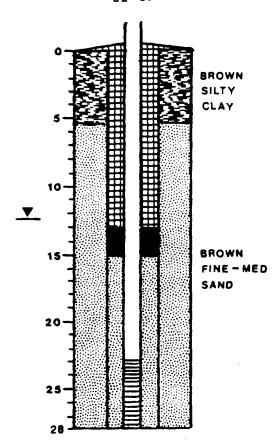
Crushed limestone parking lot surface.

		Crushed limestone parking lot surface.
1 - 2.5	11-7-13	FILL consisting of black-dark brown sandy CLAY with brick fragments, crushed limestone, small gravel, and slag material.
3.5 - 5	5-6-7	Same as above.
6 - 7.5	4-4-3	FILL consisting of gray-black silty CLAY. Trace of medium grain sand and gravel. Moist.
8.5 - 10	1-5-2	FILL consisting of soft black-gray silty CLAY. Slightly mottled. Moist.
11 - 12.5	3-2-2	WASTE consisting of black soft sandy clay (sludge) with some debris including a hard rubber material and coarse grain sand. Wet with an oily sheen.
13.5 - 15	4-5-4	WASTE - same as above. More hard rubber material and black stained debris.
16 - 17.5	7-11-9	WASTE - same as above. Trace of paper products, clay, and small gravel. Wet with black oily sheen.
18.5 - 20	7-22-9	WASTE - same as above.
		* Very difficult drilling @ 21'. Possible large metalic object encountered. Destroyed fish-tail bit on end of plug. Re-locate boring -20' east. Continue logging @ 21-22.5'.
21 - 22.5	2-2-4	Poor recovery - WASTE consisting of black oily material with a hard rubber like debris. Wet.
		WASTE discontinues # approx. 23'.
23.5 - 25	2-10-14	23.5-23 3/4 Thin soft gray silty clay layer. (-1" to 2" thick) Then brown fine grain SAND. Some black staining. Wet.
26 - 27.5	1-2-5	Dark gray fine grain SAND. Trace of medium to coarse grain sand. Wet with some black staining.
28.5 ~ 30	5-8-14	Same as above. Trace of small to medium gravel @ 29-30'.
31 - 32.5	9-13-20	Same as above.

Site Dead Creek Site-I			Boring/Well No. I-11 (cont.) Description	
		t		
33.5 - 35	4-7-13	Same as above.		
	8-17-16	Same as above.		
37 - 38.5	1 3-17-10			

 Project Name
 Dead Creek

 Project No.
 IL 3140


 Date Prepared
 2-13-87

 Prepared by
 Tim Maley

Depth (ft)

Description

EE-20

Boring/Well No. I-12/EE-20 Location Site I
Location Site ?
Location Site I Owner IEPA
Top of Inner Casing Elev. 411.41
Drilling Firm Fox drilling Driller Jerry Hemmon Start & Completion Dates 2/13, 2/13/87
Driller Jerry Hammon
Start & Completion Dates 2/13, 2/13/87
Type of Rig Mobile B-61
Method of Drilling 3 3/4" T D
Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary
WELL DATA
Hole Diam. 8 in.
Boring Depth 28 ft. Casing and Screen Diam. 2 in.
Casing and Screen Diam. 2 in.
Screen Interval 23 - 28 ft.
Screen Type stainless steel 0.01" slot
Screen Type stainless steel 0.01" slot Stickup 1.41 ft. Well Type monitoring
Well Type sonitoring
Well Construction:
#11ha Back 36 18 da Manuell
Filter Pack 28 - 15 tt. Natural
5081 15 - 13 Ft.
Grout 13 ft. to surface
Filter Pack 28 - 15 ft. Natural Seal 15 - 13 ft. Grout 13 ft. to surface Lock No. 2834
TEST DATA
Static Water Elev. 397.49 Date $3-26-87$ Static Water Elev. 398.91 Date $5-11-87$
Static Water Elev. 398.91 Date $5-11-87$
Slug Test Yes No X
Test Date
Hydraulic Conductivity
Other
water quality
-
Samples Taken Yes X No
Samples Taken Yes X No
Samples Taken Yes X No
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87
Samples Taken Yes X No
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds.
Samples Taken Yes X No
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E Samples Analyzed for HSL compounds.
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds, volatile organics
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analysed for HSL compounds, volatile organics Split Samples Yes X No
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E Samples Analysed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E 5 E Samples Analyzed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analysed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analysed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E E E Samples Analyzed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet analyzed
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet analyzed
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet analyzed
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E 5 E Samples Analysed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet analysed for HSL compounds.
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet enalyzed for HSL compounds.
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E 5 E Samples Analysed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet enalysed for HSL compounds.
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E 5 E Samples Analysed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet analysed for HSL compounds.
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E 5 E Samples Analysed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet enalysed for HSL compounds.
Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater Date Sampled 3-23-87 Samplers E & E Samples Analyzed for HSL compounds, volatile organics Split Samples Yes X No Recipient Sverdrup, Inc. for Cerro Copper Comments Subsurface soil samples from boring 3.5 - 12.5 feet analyzed for HSL compounds.

Site Dead Creek Site-I	Boring/Well No.	I-12/Well #EE-20

mple Depth	Blow Coun	t Description
		Dark brown sandy clay topsoil on surface.
- 2.5	2-3-2	Brown silty CLAY. Dry.
5 - 5	3-3-2	Same as above.
- 7.5	3-3-5	Brown fine to medium grain SAND. Dry.
5 - 10	3-5-8	Same as above.
- 12.5	3-5-8	Same as above. Moist @ 12.5'.
.5 - 15	4-8-13	Same as above. Wet.
- 17.5	1-2-4	Same as above.
.5 - 20	2-5-9	Same as above.
- 22.5	3-5-11	Same as above.
.5 - 25	4-7-11	Brown medium grain SAND. Wet. Trace of coarse grain sand 0 24-25'.
- 27.5	7-11-20	Same as above. Trace of small gravel. Wet.
		E.O.B. @ 28'

Project Name _ Dead Cre	Dek	Boring/Well No
Project No. IL 3140		Location Site J
Date Prepared 12-17-6	16	Owner IEPA
Prepared by Tim Maley	<u></u>	Top of Inner Casing Elev. NA
		Drilling Firm Fox drilling
Depth (ft)	Description	Driller Jerry Hammon
		Start & Completion Dates 12/17, 12/17/80
		Type of Rig Mobile B-61
J — 1		
J – ,		Method of Drilling 3 3/4" I.D.
_		hollow stem augers
O _JYYYYYYYYYYY	^	
7777777777	/////////	WELL DATA
-! //////////	WWW FILL	
- / ///////////////////////////////////	///////I	Hole Diam. 8 in.
_!///////////	WWW	Boring Depth 20.0 ft.
		Casing and Screen Diam.
		Screen Interval
		Screen Type
接種種		Stickup
化连续电子	GRAY SILTY CLAY	Well Type
	FISHER	Well Construction:
10	F. 3-7	Filter Pack
		Seal
		31046
		Lock No.
7		
-		TEST DATA
15-	BROWN AND GRAY	•
		Static Water Elev Date Date
	SANDY SILT	Static Water Elev Date
		Slug Test Yes No No Test Date
		Test Date
7		Hydraulic Conductivity
20-	<u> </u>	Other
		WATER QUALITY
		Samples Taken Yes No X
		No. of Samples
		Types of Samples
		8-A- 81-d
		Date Sampled
		Samplers
		Samples Analysed for
		Split Samples(soil)Yes X No
		Recipient Sterling steel
		Companys Subsurface soil sample
		from boring 10 - 20' analyzed for
		HSL compounds.
		remares
		Ground elev. 411.76
		G104114 4141. 411.10

Site Dead Creek Site-J		Boring/Well No. J-1
Sample Depth	a Blow Cour	Description
		Black foundry SAND on surface.
1 - 2.5	4-4-8	FILL consisting of black-dark brown-rust colored medium grain SAND. Trace of crushed limestone and brick fragments.
3.5 - 5	2-5-6	Foundry sand FILL to 4'. Then: Gray silty CLAY. Slightly mottled. Trace of fine grain sand.
6 - 7.5	2-2-4	Same as above.
8.5 - 10	3-3-4	Same as above. Siltier @ 10'.
11 ~ 12.5	3-4-6	Light brown milty SAND. Becomes mandy SILT at 12'.
13.5 - 15	2-4-5	Brown sandy SILT. Wet.
16 - 17.5	3-5-6	Same as above.
18.5 - 20	2-2-3	Dark gray sandy SILT. Some fine grain sand. Wet.

Project Name I	Dead Creek	Boring/Well NoJ-2
roject No. II	Dead Creek	Location Site J
ate Prepared	12-17-86	Owner IEPA
repared by Ti	im Maley	Top of Inner Casing Elev. NA
• • —		Drilling Firm Fox drilling
epth (ft)	Description	Driller Jerry Hammon
		Start & Completion Dates12/17,12/17/86
		Type of Rig Mobile 8-61
	J — 2	
	_	Method of Drilling 3 3/4" I.D.
0-8444	****	hollow stem augers
-{XXXX	KXXXXXXXXXX	WELL DATA
7	^^^^	
-1 (XXXX)	YYYYYYYYYY Fill	Hole Diam. 8 in.
- 1 XXXXX	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Boring Depth 25.0 ft.
5— ((((()))	XXXXXXXXXXXXXI	Casing and Screen Diam.
<u> </u>	<u>minimum</u>	Screen Interval
1.5		Screen Type
		Stickup
1		Mell TAbe
.,]	GRAY	SILTY CLAY Well Construction:
10-1		Filter Pack
		Seel Grout
		Lock No.
15-		TEST DATA
,,,		Static Water Elev Date
-4		Static Water Elev. Date
4	GRAY	SANDY SILT Slug Test Yes No No No No No No No No No No No No No
_		Test Date
20-		Hydraulic Conductivity
20-		Other
7		
7. O. C.		
1	GRAY I	MED - CRS SAND WATER QUALITY
25		Samples Taken Yes No_X
		No. of Samples
		Types of Samples
		Date Sampled
		Samplers
		Samples Analyzed for
		enlik en-lasiliwan w
		Split Samples(soil)Yes X No
		-
		Comments Subsurface soil samples
		from boring 15 - 25' analyzed for
		HSL compounds.
		REMARKS
		Gasoline odor
		Ground elev. 413.10

Site	Dead Creek Site-J	Boring/Well No.	J-2

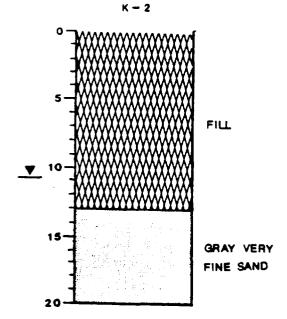
ample Depth	Blow Count	Description	
		Black foundry sand on surface.	
- 2.5	5-5-27	FILL consisting of black-dark gray sandy CLAY. Some foundry sand and crushed limestone fragments.	
.5 - 5	5-6-7	Same as above. Fill discontinues @ approx. 6'.	
- 7.5	2-2-3	Gray silty CLAY. Slightly mottled. Trace of fine grain sand.	
.5 - 10	2-3-4	Same as above. Siltier and trace of small gravel @ 10'.	
- 12.5	2-3-3	Gray fine grain sandy SILT. Wet @ 13'.	
.5 - 15	3-4-4	Same as above. Wet.	
- 17.5	2-2-2	Same as above.	
3.5 - 20	1-1-2	Same as above. Varved @ 19'.	
1 - 22.5	1-1-9	Gray medium to coarse grain SAND. Trace of small gravel. Wet. Gasoline odor.	
.5 - 25	4-9-14	Same as above. Wet.	
	-	±.o.s. € 25'	

Project Name	Dead Creek		Boring/Well No. J-3
Project No. I	L 3140	· · · · · · · · · · · · · · · · · · ·	Location Site J
Prepared by T	12-17-86 im Maley		Owner IEPA Top of Inner Casing Elev. NA
Tropered by			Drilling Firmfox drilling
Depth (ft)	Descript:	ion	Driller Jerry Hammon
	• • • • • • • • • • • • • • • • • • • •		Start & Completion Dates12/17,12/17/86
			Type of Rig Mobile 8-61
	J – 3		
			Method of Drilling 3 3/4" I.D.
ο – γγγγ	YYYYYYYVVV		hollow stem augers
±₩	((((((((((((((((((((((((((((((((((((WELL DATA
-1000	^^^^		Hole Diam. 8 in.
-IX (XX)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		Boring Depth 25.0 ft.
5- I W			Casing and Screen Diam.
- / W			Screen Interval
- ₩			Screen Type
- ₩	*************************************	FILL	Stickup
	YYYYYY		merr type
10-1000	())		Well Construction:
	XXXXXXXXXXYYYYYYYY		Filter Pack
			Seel Grout Lock No.
<u> </u>			Lock No.
15-1			TEST DATA
	UXXXXXXXXXXXYYYYYY		Static Water Elev. Date
-14444			Static Water Elev. Date Static Water Elev. Date
1000	***************************************		21nd Legt Aes No
400			
20-			Hydraulic Conductivity
		BROWN AND GRAY	Other
		MEDIUM SAND	
3			WATER QUALITY
25			Samples Taken Yes No X
			No. of Samples
			No. of Samples Types of Samples
			Date Sampled
			Samples Analyzed for
			• • • • • • • • • • • • • • • • • • • •
			Split Samples(soil)Yes X No Recipient Sverdrup, Inc. for Cerro
			Copper
			Comments Subsurface soil sampled
			from boring 0 - 10' analysed for
			HSL compounds.
			REPLANES Ground elev. 412.89

: [

Site Dead Creek Site-J Sample Depth Blow Count		Boring/Well No. J-3
		t Description
		Foundry sand on surface.
1 - 2.5	4-5-8	FILL consisting of black-dark brown sandy CLAY. Trace of medium grain sand (foundry) and brick fragments.
3.5 - 5	6-9-14	Same as above. Auger refusal at 5'. Large obstruction encountered. Moved boring 6' north. Continue sampling.
6 - 7.5	2-2-3	FILL consisting of black-dark brown sandy CLAY. Trace of medium grain foundry sand and slag material. Loose and dry @ 10'.
8.5 - 10	3-3-3	Same as above.
11 - 12.5	2-2-1	Same as above. Moist.
13.5 - 15	1-2-3	Same as above. Wet.
16 - 17.5	1-2-8	Same as above. Fill discontinues @ approx. 18'.

18.5 - 20 2-5-7 Brown-gray medium grain SAND. Wet.


E.O.B. @ 25'

23.5 - 25 | 4-7-10 | Same as above. Increased coarse grain sand.

Project Name Dead Creek	Boring Well No. 7 1
Project No. IL 3140	Boring/Well No. K-1 Location Site K
Date Prepared 12-16-86	Owner IEPA
Prepared by Tim Maley	Top of Inner Casing Elev. NA
	Drilling Firm Fox drilling
Depth (ft) Description	DrillerJerry Hammon
oopen (10)	Start 4 Completion Dates12/16,12/16/86
	Type of Rig Mobile 8-61
и .	Type of Kid Hopite 8-81
K – 1	Method of Drilling 3 3/4" I.D.
0-1111	hollow stem augers
TMMMMMAAAAAA	HOLIDA SCAR ARGAIS
7//////////////////////////////////////	WELL DATA
- 1 ////////////////////////////////////	wann could
-f////////////////////////////////////	Hole Diam. 8 in.
TXXXXXXXXXXXXII FILL	_ , ,
s- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Casing and Screen Diam.
	Screen Interval
_10000000000000000000000000000000000000	Screen Type
_[XXXXXXXXX	Stickup
`` \ (\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Well Type
TXXXYYYYYYYYY T	Well Construction:
▼ 10 - {\(\frac{1}{2}\(\frac{1}2\	Filter Pack
	Seal
	Grout
	Lock No.
GRAY	AND BROWN
	TEST DATA
15-MEDI	UM SAND
	Static Water Elev. Date Static Water Elev. Date
	Static Water Elev Date
	Sind Lest Aes No
	Test Date
20	Hydraulic Conductivity
	Other
	WATER QUALITY
	Acceptance with the second control of the se
	Samples Taken Yes No_X
	No. of Samples
	Types of Samples
	Data Capalad
	Date Sampled
	Samples Analyzed for
	sembras wittless ros
	
	Split Samples Yes No X
	Recipient
	Comments Subsurface soil samples
	from boring 0 - 10' analyzed for
	HSL compounds.
	REMARES
	Ground elev. 405.86

Site Dead Cr	eek Site-K	Boring/Well No. K-1			
Sample Depth	Blow Count	Description			
1 - 2.5	14-11-11	FILL consisting of dark brown silty CLAY. With crushed limestone and brick fragments. Trace of medium grain sand and small gravel.			
3.5 - 5	2-2-1	Same as above. Moist.			
6 - 7.5	1-2-1	Same as above.			
8.5 - 10	2-3-6	Same as above. Slightly stained. FILL discontinues @ approx. 10.5'.			
11 - 12.5	3-6-9	Gray-brown medium grain SAND. Wet. Some black staining θ 11'. Thin clay layer at 12' (-3.5").			
13.5 - 15	3-5-7	Gray-brown medium grain SAND. Wet.			
16 - 17.5	3-3-4	Gray-brown medium to coarse grain SAND. Trace of small gravel. Wet.			
18.5 - 20	2-3-4	Same as above.			

Project Name Dead Creek
Project No. IL 3140
Date Prepared 1/12/87
Prepared by Kevin Phillips
Depth (ft) Description

Boring/Well No.	K-2
rocation 21fe	<u>K</u>
Top of Inner Cas	ing Elev. NA
Drilling Firm	Fox drilling
Driller Jerry	Hammon on Dates 1/12, 1/12/8
Start & Completi	on Dates 1/12 1/12/1
Type of Rig Mo	bile 8-61
Method of Drilli	ng <u>3 3/4" I.D.</u>
hollow stem au	3 3/4 1.0.
norrow seem au	ques
	LL DATA
Hole Diam 8 i	n. 0.0 ft.
Boring Depth2	0.0 ft.
Screen Interval	
Screen Type	
Stickup	
Well Tune	
Wall Capation	n:
warr countincilo	п.
LITCOL PECK	
3441	· · · · · · · · · · · · · · · · · · ·
Grout	
Lock No.	
Ŧ	EST DATA
Static Water Ele	v. Date
Static Water Ele	v Date
Cine Tank	
Slug Test	Yes No
Test Date	
Hydraulic Conduc	tivity
Other	
	E QUALITY
Samples Taken	Yes No_X
No. of Samples	
Types of Samples	
Date Sampled	
Samplers	
Samples Analyzed	for
-	
	w w
Split Samples	YesNo_X
Recipient	
Comments Subsu	rface soil samples - 10' analyzed for
from boring 0	- 10' analyzed for
HSL compounds.	
	REMARKS
Ground elev. 4	

sit•	Dead Creek Site-K	Boring/Well No.	K-2	

		501.13, 101.
Sample Depti	a Blow Count	Description
1 - 2.5	10-11-25	FILL consisting of brown-gray-black sandy CLAY with crushed limestone, gravel, and brick fragments. Moist.
3.5 - 5	3-4-5	Same as above.
6 - 7.5	1-2-2	Same as above. Silty and soft.
8.5 - 10	2-2-1	Same as above. Trace of medium grain sand and small gravel. Very moist.
11 - 12.5	3-3-4	Same as above. Trace of wood chips. Wet. Fill discontinues @ approx.
13.5 - 15	1-6-8	Firm dark gray-gray very fine grain SAND. Well rounded and well sorted. Black streaking θ 13 3/4' (-2"). Wet.
16 - 17.5	2-4-4	Same as above. Natural black staining.
18.5 - 20	10-11-14	Same as above. Cleaner. Wet.
		E.O.B. @ 20'

 Project Name
 Dead Creek

 Project No.
 IL 3140

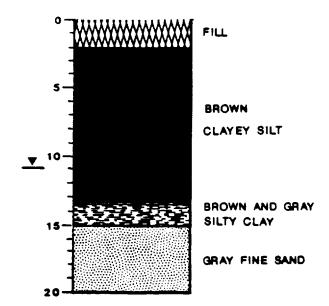
 Date Prepared
 1-22-87

 Prepared by
 Tim Maley
 Boring/Well No. K-3 Location Site K Owner IEPA
Top of Inner Casing Elev. Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 1/22, 1/22/87 Depth (ft) Description Type of Rig Mobile B-61 K - 3 Method of Drilling 3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. _ 8 in. Boring Depth 20.0 ft. Casing and Screen Diam. Screen Interval Screen Type FILL Stickup _ Well Type Well Construction: Filter Pack 10 Seal Grout Lock No. TEST DATA Static Water Elev. Static Water Elev. Date GRAY SANDY CLAY Slug Test BROWN AND GRAY Test Date Hydraulic Conductivity FINE SAND 20-Other WATER QUALITY Samples Taken Yes __ No X No. of Samples Types of Samples Date Sampled Samplers Samples Analyzed for Split Samples Recipient Comments Subsurface soil samples from boring 10 - 20' analyzed for HSL compounds. REMARKS Ground elev. 405.26

Site Dead Creek Site-K Sample Depth Blow Count		Boring/Well No. K-3
		Description
1 - 2.5	6-7-12	FILL consisting of brown-black silty CLAY. Some small gravel and crushed limestone fragments.
3.5 - 5	6-7-9	FILL consisting of black sandy CLAY with small gravel, slag material, asphalt, and cinders.
6 - 7.5	1-1-1	FILL consisting of black clayey SAND. Trace of small gravel. Wet.
8.5 - 10	1-2-1	Same as above.
11 - 12.5	1-2-2	No recovery.
13.5 - 15	4-10-5	FILL consisting of soft black silty CLAY. Trace of fine to medium grain sand, small gravel, and limestone fragments. Wet.
		Fill discontinues @ approx. 16.5'.
16 - 17.5	2-3-6	Gray sandy CLAY, Very moist.
18.5 - 20	1-3-4	Brown-gray fine grain SAND. Wet.

 Project Name
 Dead Creek

 Project No.
 IL 3140


 Date Prepared
 12-11-86

 Prepared by
 Kevin Phillips

Depth (ft)

Description

L - 1

Boring/Well No. Location Site	L-1 L
Location Site	,
	6
Owner IEPA	
Top of Inner Cas	ing Elev. NA
Dilling Firm	Pox drilling
Driller Jerry	Vannon
Stant a Series	Hammon on Dates 12/11,12/11/
Start & Completio	on Dates 12/11,12/11/
Type of Rig <u>Mol</u>	bile 8-61
Method of Drilli	ng <u>3 3/4" I.D.</u>
hollow stem aud	9018
	LL DATA
Hole Diam. 8 is	n. 0.0 ft.
Boring Depth2	0.0 ft.
Screen interval	
Screen Type	
Stickup	
Stickup Well Type	
Well Construction	2.
Filter Pack _	
5441	
Grout	
Lock No.	
•	
T	EST DATA
Static Water Elec	V. Date
Static Water Flag	V Date
Static Water Elec	·· vaa-
Slug Test Test Date	Y • 8 No
Test Date	
Hydraulic Conduc	tivity
Other	
WATE	R QUALITY
Samples Taken	Yes No X
Samples Taken No. of Samples	Yes No_X
Samples Taken No. of Samples Types of Samples	
Types of Samples	
Types of Samples	
Date Sampled	
Date Sampled Samplers Samples Analyzed	for
Date Sampled	
Date Sampled Samplers Samplers Analysed Split Samples	for
Date Sampled Samplers Samplers Analysed Split Samples	for
Date Sampled Samplers Samples Analyzed Split Samples Recipient	forYesNo_X
Date Sampled Samplers Samplers Analyzed Split Samples Recipient Comments Subsu	for NoX rface_soil samples
Date Sampled Samplers Samplers Analyzed Split Samples Recipient Comments Subsurfrom boring 5	forYesNo_X
Date Sampled Samplers Samplers Analyzed Split Samples Recipient Comments Subsu	for NoX rface_soil samples
Date Sampled Samplers Samplers Analyzed Split Samples Recipient Comments Subsurfrom boring 5	for NoX rface_soil samples
Date Sampled Samplers Samples Analyzed Split Samples Recipient Comments Subsurfrom boring 5 HSL compounds.	for NoX rface_soil samples
Date Sampled Samplers Samples Analyzed Split Samples Recipient Comments Subsurfrom boring 5 HSL compounds.	for
Date Sampled Samplers Samples Analyzed Split Samples Recipient Comments Subsufrom boring 5 HSL compounds.	for
Date Sampled Samplers Samples Analyzed Split Samples Recipient Comments Subsufrom boring 5 HSL compounds.	for
Date Sampled Samplers Samples Analyzed Split Samples Recipient Comments Subsufrom boring 5 HSL compounds.	for
Date Sampled Samplers Samples Analyzed Split Samples Recipient Comments Subsufrom boring 5 HSL compounds.	for
Date Sampled Samplers Samples Analyzed Split Samples Recipient Comments Subsufrom boring 5 HSL compounds.	for

Sample Depth Blow Count		Boring/Well No. L-1
		Description Description
- 2.5	4-6-7	0-2 FILL consisting of black sandy clay with asphalt, cinders, and gravel.
		Fill discontinues @ approx. 2'.
		2-2.5 Brown silty CLAY. Some small gravel. Moist.
.5 - 5	4-4-3	Brown clayey SILT. Little fine grain sand. Moist.
- 7.5	3-3-6	Same as above.
.5 - 10	2-2-2	Same as above. Very moist.
1 - 12.5	2-1-1	Soft gray clayey SILT. Little fine grain sand. Wet.
3.5 - 15	1-1-1	Soft brownish-gray very silty CLAY. Trace of fine grain sand. Occasional thin seams of gray clayey silt. Moist.
6 - 17.5	WOR	Loose gray fine grain SAND. Wet.
8.5 - 20	5-5-7	Same as above. Wet.
	i	E.O.B. @ 20'

 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 12-12-86

 Prepared by
 Kevin Phillips
 Boring/Well No. Location Site L Owner IEPA
Top of Inner Casing Elev. Drilling Firm Fox drilling Driller Jerry Hammon Start & Completion Dates 12/12,12/12/86 Depth (ft) Description Type of Rig Mobile B-61 L - 2 Method of Drilling 3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. 8 in. Boring Depth 20.0 ft. Hole Diam. FILL Casing and Screen Diam. Screen Interval Screen Type Stickup Well Type Well Construction: Filter Pack 10 Seal Grout GRAY AND BLACK Lock No. SANDY SILT TEST DATA V 15-Static Water Elev. Date Date Static Water Elev. BLACK FINE SAND Slug Test Test Date Hydraulic Conductivity Other 20 WATER QUALITY Samples Taken Yes___ No X No. of Samples Types of Samples Date Sampled Samplers Samples Analyzed for Split Samples Yes No_X Recipient from boring 5 - 15' analyzed for Comments HSL compounds. REMARKS Strong organic odor Ground elev. 407.32

Site Dead Creek Site-L Boring/Well No. L-2	sit•	Dead Creek Site-L	Boring/Well No.	L-2
--	------	-------------------	-----------------	-----

Sample Depth B	Blow Count	Description
		0-1 Fill on surface - black cinders.
1 - 2.5	4-12-60	FILL consisting of black silty CLAY. Trace of small gravel and concrete fragments. Moist.
3.5 - 5	8-5-7	FILL consisting of hard dark gray silty CLAY. Trace of small gravel, brick fragments, and wood chips.
6 - 7.5	2-4-8	FILL consisting of black-gray silty CLAY. Trace of small gravel and wood chips. Very moist. Stained black.
		Fill discontinues @ 8'.
8.5 - 10	2-2-3	Soft gray very sandy SILT. Some fine grain sand. Very moist. Black staining throughout.
11 - 12.5	6-7-14	Same as above.
13.5 - 15	4-8-9	Loose black sandy SILT. Some fine grain sand. Very moist.
16 - 17.5	2-2-3	Loose black fine grain SAND. Wet.
18.5 - 20	2-3-6	Same as above. Trace of silt. Wet.
		E.O.B. @ 20'.

Project Name Dead Creek
Project No. IL 3140
Date Prepared 12-12-86
Prepared by Kevin Phillips Boring/Well No. Location Site L Owner IEPA
Top of Inner Casing Elev. IEPA Drilling Firm Fox drilling Driller Jerry Hammon
Start & Completion Dates12/12,12/12/86 Depth (ft) Description Type of Rig Mobile B-61 L - 3 Method of Drilling 3 3/4" I.D. hollow stem augers WELL DATA FILL Hole Diam. 8 in.
Boring Depth 20.0 ft. Casing and Screen Diam. Screen Interval Screen Type _ Stickup Well Type Well Construction: Filter Pack 10 GRAY AND BLACK SILT Seal Grout Lock No. TEST DATA <u>▼</u> 15-Static Water Elev. Date Static Water Elev. Date Slug Test Yes BLACK FINE SAND Test Date Hydraulic Conductivity 20 Other WATER QUALITY Samples Taken Yes No. of Samples Types of Samples Date Sampled _ Samplers Samples Analyzed for Split Samples No_X Yes_ Recipient _ Comments Subsurface soil samples from boring 0 - 20' analyzed for HSL compounds. REMARKS Strong organic odor Ground elev. 407.90

: =

Site Dead Creek Site-L	Boring/Well No.	<u>L-3</u>	

Sample Depth B	low Count	Description
		0-1 Black cinders FILL
1 - 2.5	6-7-9	FILL consisting of stiff brown-gray silty CLAY. Trace of fine grain sand, small gravel, and brick fragments. Moist.
3.5 - 5	5-5-6	FILL consisting of stiff gray silty CLAY. Little small gravel; trace of fine grain sand, large gravel, brick fragments, and wood chips. Moist.
		Fill apparently discontinues @ approx. 6'.
6 - 7.5	2-2-3	6-6.5 Loose dark gray SILT. Stained black. 6.5-7.5 Loose brownish gray very sandy SILT. Some fine grain sand. Moist.
8.5 - 10	3-4-6	Firm, gray clayey SILT. Some brownish staining. Trace of fine grain sand. Moist. Mottled.
11 - 12.5	3-3-5	Firm black clayey SILT. Some clay. Little fine grain sand. Very moist.
13.5 - 15	3-3-5	Firm black-gray sandy SILT. Some fine grain sand. Little clay. Moist.
16 - 17.5	2-5-10	16-17 Same as above. Wet. 17-17.5 Black silty SAND. Wet.
18.5 - 20	1-2-4	Firm black fine grain SAND. Well sorted. Wet.
		E.O.B. @ 20'

Project Name Dead Creek
Project No. IL 3140
Date Prepared 12-16-86
Prepared by Tim Maley

Depth (ft)

Description

FILL

BROWN SILT

BROWN CLAY
GRAY FINE SAND

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRAY

GRA

	(IEPA well replaced)
Boring/Well No.	L-4/EE-G109
Location Site	L
Owner IEPA	
Top of Inner Cas	ing Elev. 409.71
Drilling Firm	Fox drilling
Driller Jerry	Hammon
Start & Completi	on Dates12/16,12/16/86
Type of Rig Mo	bile B-61
Method of Drilli	ng <u>3 3/4" I.D.</u>
hollow stem au	igers
VI	ILL DATA
Hole Diam. 8 i	in.
Boring Depth 2	25.0 ft.
Casing and Scree	on Diam. 2 in.
Screen Interval	17,5 - 22.5 ft.
Screen Type stai	nless steel 0.01" slot
Chicken 1 Gi 4	
Well Type moni	toring
Well Construction	n:
Filter Pack	25 - 13 ft. 0 ft. . to surface
Seal 13 - 1	0 ft.
Grout 10 ft	to surface
Lock No. 28	134
	···
	rest data
Static Water Ele	ov. 397.42 Date 3-26-87 v. 398.45 Date 5-11-87 Yes No X
Static Water Ele	v. 398.45 Date 5-11-87
Slug Test	Yes No X
Test Date	
Hydraulic Conduc	tivity
Other Bu - 1	L A
Cond. = 4500 U	mahos Temp. = 58° F
Cloudy, dark,	strong odor
	ER QUALITY
Samples Taken	Yes Y No
No of Samples	Yes X No No 1 round
Types of Samples	groundwater
.,,,	
Date Sampled 3	1-24-87
Samplers E & E	-24-67
Samples Analyzed	for HSL compounds,
volatile organ	lics
Split Samples	YesNo_X
Recipient	
Comments Subsu	orface soil samples
HSL compounds.	
noo compounds.	
	REMARKS
	
	
	
	

Site [Dead Creek Site-L	Boring/Well No	L-4/Well # EE-G109
			(IEPA Replacement Well)

Sample Depth Bl	ow Count	Description
		0-2' FILL consisting of black asphalt and clay.
2.5	5-6-7	from 2' Brown sandy SILT. Moist.
3.5 - 5	3-3-4	Brown sandy SILT. Trace of medium grain sand.
5 - 7.5	3-4-4	6.5-7 Brown silty CLAY. Trace of fine grain sand. 7-7.5 Gray fine grain SAND. Trace of silt and clay.
8.5 - 10	3-4-6	Brown-gray (mottled) clayey SILT. Trace of fine grain sand. Moist.
11 - 12.5	4-7-8	Gray sandy SILT. Wet.
.3.5 - 15 6	i-11-13	Same as above. Trace of fine grain sand.
16 - 17.5	-14-34	Stiff gray sandy SILT. Thin laminated black-gray layering.
18.5 - 20 8	-13-15	Gray fine grain SAND. Wet.
21 - 22.5	-12-17	Same as above.
13.5 - 25 7	-14-18	Dark gray fine to coarse grain SAND. Some black staining. Wet.
		E.O.B. @ 25'

Project Name Dead Creek
Project No. IL 3140
Date Prepared 12-13-86
Prepared by Kevin Phillips Boring/Well No. N-1 Location Site N Owner IEPA Top of Inner Casing Elev. Drilling Firm Fox drilling Depth (ft) Driller Jerry Hammon Start & Completion Dates12/15,12/15/86 Description Type of Rig Mobile B-61 N-1Method of Drilling 3 3/4" I.D. hollow stem augers FILL WELL DATA Hole Diam. 8 in. Boring Depth 20.0 ft. Casing and Screen Diam. GRAY SANDY SILT Screen Interval Screen Type Stickup _ Well Type Well Construction: 10-Filter Pack Seal Grout Lack No. GRAY FINE SAND TEST DATA 15 Static Water Elev. __ Static Water Elev. __ ____ Date _ Date Slug Test Test Date Hydraulic Conductivity 20 Other WATER QUALITY Samples Taken Yes No X No. of Samples Types of Samples Date Sampled Samplers Samples Analyzed for No X Split Samples Yes___ Recipient Comments Subsurface soil samples from boring 0 - 10' analyzed for HSL compounds. REMARKS

site	Dead	Creek	Site-N

Boring/Well No. N-1

Sample Depth	Blow Coun	t Description
1 - 2.5	4-6-10	0-2.5 FILL consisting of crushed limestone, gravel, and fine to coarse grain sand. Wet.
		Fill discontinues @ 3'.
3.5 - 5	3-9-9	$\frac{3.5-4}{4-5}$ Stiff gray very sandy SILT. Some fine grain sand. Wet.
6 - 7.5	2-4-3	6-7 Loose gray very sandy SILT. Some fine grain sand. Black and reddish staining throughout. Wet. $7-7.5$ Loose brownish gray fine to medium grain SAND. Some reddish
8.5 - 10	2-4-7	staining. Wet. Loose gray sandy SILT. Some fine grain sand. Trace of organic materia.
8.5 - 10	2-4-7	(wood, etc.). Stained black. Wet.
11 - 12.5	1-2-5	Loose brown very silty fine grain SAND. Some silt. Black stained laye at 12' (-1^n)
13.5 - 15	1-3-3	Same as above.
16 - 17.5	2-5-7	Firm gray silty fine grain SAND. Trace of small to medium gravel. Wet
18.5 - 20	2-3-7	Firm gray fine grain SAND. Wet.
	:	E.O.B. @ 20'

Project Name Dead Cru Boring/Well No. Dead Creek N-2 Location Site N
Owner IEPA Date Prepared 12-15-86
Prepared by Kevin Phillips Top of Inner Casing Elev. NA Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 12/15,12/15/86 Depth (ft) Description Type of Rig Mobile 8-61 N-2Method of Drilling 3 3/4" I.D. hollow stem augers and rotary WELL DATA Hole Diam. 8 in.
Boring Depth 40.0 ft.
Casing and Screen Diam. FILL Screen Interval Screen Type Stickup Well Type Well Construction: 10 Filter Pack Seal \blacksquare DARK GRAY SANDY SILT Grout Lock No. TEST DATA 15 Static Water Elev. Static Water Elev. Slug Test Yes Test Date Hydraulic Conductivity 20 Other GRAY WATER QUALITY FINE - MED SAND 25-Samples Taken No. of Samples Types of Samples Date Sampled 30 Samplers Samples Analyzed for Split Samples Yes No_X 35-Recipient _ Comments Subsurface soil samples from boring 5 - 15' analyzed for HSL compounds. 40 REMARKS

: [

Site Dead Creek Site-N

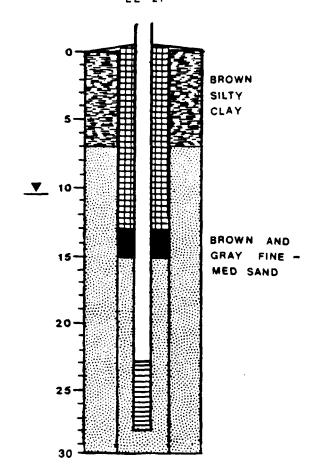
Boring/Well No. N-2

Sample Depth Blow Count		Description
		0-1 Crushed limestone fill
1 - 2.5	9-10-12	1-2 Crushed lime fill
		2-2.5 FILL consisting of loose dark gray very sandy SILT. Some fine
	ļ	grain sand. Trace of organic material (wood & roots).
3.5 - 5	N	No recovery - possible rubber tire
6 - 7.5	N	No recovery - possible concrete
8.5 - 10	47-6-2	FILL consisting of dark gray silty clay with concrete material and
		gravel. Fill discontinues @ approx. 10'.
11 - 12.5	6-10-9	Firm dark gray very sandy SILT. Some very fine grain sand. Trace of
	ĺ	organic material (wood and roots). Black streaks. Wet.
13.5 - 15	3-4-4	Firm gray fine to medium grain SAND. Trace of small to medium gravel.
		Wet. Sand is rounded to sub angular and fairly well to poorly sorted.
16 - 17.5	7-11-12	Gray fine to medium grain SAND. Trace of small gravel. Wet.
18.5 - 20	8-12-14	Dense brown fine to medium grain SAND. Well sorted. Wet.
21 - 22.5	9-13-15	Same as above.
23.5 - 25	9-11-15	Dense gray fine to medium SAND. Trace of coarse grain sand and small
		gravel. Wet.
26 - 27.5	8-12-13	Dense gray fine to coarse grain SAND. Trace of small gravel. Wet.
28.5 - 30	9-14-23	Same, as above.
31 - 32.5	7-9-11	Dense gray very fine grain SAND. Wet.
33.5 - 35	6-8-10	Same as above. Darker gray.
36 - 37.5	12-17-23	Very dense. Gray fine to coarse grain SAND. Wet.
38.5 - 40	8-9-12	Same as above.
		E.O.B. @ 40'

 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 2-16-87


 Prepared by
 Tim Maley

Depth (ft)

: **T**

Description

EE-21

Boring/Well No.	
Location Site	0
Owner IEPA	
Top of Inner Cas	ing Elev. 407.41
Drilling Firm	Fox drilling Hammon
Driller Jerry	Vannon
50011	namon
State & Combiner	on Dates 2/16, 2/16/8
Type of Rig _ Mo	bile 8-61
Method of Drilli	ng 3 3/4" I.D.
hollow stem au	
WE	LL DATA
Hole Diam. 8 i	n
Boring Depth 3	0 ft.
Casing and Scree	n Diam. 2 in.
Screen Interval	23 - 28 ft.
Screen Type stai	nless steel 0.01" slot
Stickup 1 13 f	t. toring
Well Tree	<u> </u>
well typemoni	coring
Well Constructio	
Filter Pack	28 - 15 ft. Natural
Seal 15 - 1	3 ft.
Grout <u>13 ft</u>	. to surrace
Lock No. 28	34
T	EST DATA
Static Water Ele	v. 395.77 Date 3-26-8 v. 397.56 Date 5-11-8
Static Water Ele	v. <u>397.56</u> Date <u>5-11-8</u>
Test Date5-12	-87
Hydraulic Conduc	tivity 2.3 x 10 cm/sec
Other oH =	6.8
Cond. = 1800 u	6.8 mhos Temp. = 58° F
Cloudy, yellow	ich
	R QUALITY
Samples Taken No. of Samples	Yes X No
No. of Samples	1 round
Types of Samples	groundwater
Date Sampled 3	-24-87
Samplers E & E	
Samples has larged	for HSL compounds
	IOI NSL COMPOUNTS
sembras vustáted	
Semples Visitized	
Split Samples	Yes X No
Split Samples Recipient Gera	Yes X No
Split Samples	Yes X No
Split Samples Recipient Gera the Village of	Yes X No ghty & Miller for Sauget
Split Samples Recipient Gera the Village of	Yes X No ghty & Miller for Sauget
Split Samples Recipient Gera the Village of Comments Subsu from boring 15	Yes X No ghty & Miller for Sauget rface soil samples - 25 feet analyzed
Split Samples Recipient Gera the Village of	Yes X No ghty & Miller for Sauget rface soil samples - 25 feet analyzed
Split Samples Recipient Gera the Village of Comments Subsu from boring 15	Yes X No ghty & Miller for Sauget rface soil samples - 25 feet analyzed
Split Samples Recipient Gera the Village of Comments Subsu from boring 15 for HSL compou	Yes X No ghty & Miller for Sauget rface soil samples - 25 feet analyzed
Split Samples Recipient Gera the Village of Comments Subsu from boring 15 for HSL compou	Yes X No ghty & Miller for Sauget rface soil samples - 25 feet analyzed nds.
Split Samples Recipient Gera the Village of Comments Subsu from boring 15 for HSL compou	Yes X No ghty & Miller for Sauget rface soil samples - 25 feet analyzed nds.
Split Samples Recipient Gera the Village of Comments Subsu from boring 15 for HSL compou	Yes X No ghty & Miller for Sauget rface soil samples - 25 feet analyzed nds.

Site	Dead	d Cı	eek	Site-	0

Boring/Well No. 0-1/Well #EE-21

Sample Depth Blow Count		Description
		Grassy field on surface
1 - 2.5	4-5-4	Brown silty CLAY. Trace of very fine grain sand. Dry.
3.5 - 5	1-2-2	Same as above.
6 - 7.5	1-1-3	Same as above.
8.5 - 10	3-3-6	Brown fine grain SAND. Trace of silt. Dry.
11 - 12.5	5-5-6	Same as above. Trace of medium grain sand. Moist.
13.5 - 15	1-3-5	Brown medium grain SAND. Trace of coarse grain sand. Wet. Thin gray silty clay layer at 14^\prime (2^\prime)
16 - 17.5	1-3-6	Gray fine grain SAND. Wet. Trace of thin gray silty clay layers at 16.5° (1°)
18.5 - 20	1-5-5	Gray medium grain SAND. Trace of coarse grain sand and small to large gravel. Wet.
21 - 22.5	7-7-6	Same as above.
23.5 - 25	4-5-7	Same as above.
28.5 - 30	5-3-3	Same as above.
		E.O.B. @ 30'

 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 1-17-87

 Prepared by
 Tim Maley
 Boring/Well No. 0-2/EE-22 Location Site 0 Owner IEPA Top of Inner Casing Elev. 416.26 Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 1/17, 1/17/87 Description Depth (ft) Type of Rig Mobile B-61 EE-22 Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary WELL DATA Hole Diam. 8 in. Boring Depth 35 ft. Casing and Screen Diam. FILL Screen Interval 28 - 33 ft. Screen Type stainless steel 0.01" slot Stickup 1.54 ft. Well Type monitoring Well Construction: Filter Pack 33 - 24 ft. Natural Seal 24 - 22 ft.
Grout 22 ft. to surface BROWN SILT 10 Lock No. 2834 BROWN FINE SAND TEST DATA BROWN AND Static Water Elev. $\frac{394.98}{396.57}$ Date $\frac{3-26-87}{5-11-87}$ GRAY CLAY Yes Slug Test Test Date BROWN VERY FINE SAND Hydraulic Conductivity ther pH = 69

Cond. = 3600 umhos Temp. = 56° F

Strong odor, cloudy, dark brown Other BROWN AND GRAY CLAY WATER QUALITY Samples Taken Yes_X No. of Samples 1 round
Types of Samples groundwater 25 GRAY FINE SAND Date Sampled 3-Samplers E & E 3-24-87 Samples Analyzed for HSL compounds 30-Recipient Geraghty & Miller for the
Village of Sauget 35 Comments Subsurface soil samples from boring 20 - 30' analyzed for HSL compounds. REMARKS

Site	Dead	Creek	Site-O

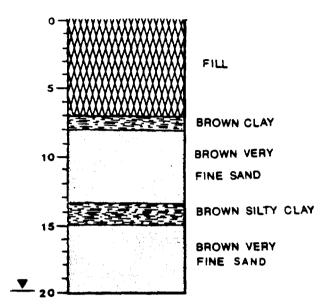
Boring/Well No. 0-2/Well #EE-22

Sample Depth	Blow Count	Description
		Well vegetated clay cap.
1 - 2.5	2-4-8	FILL consisting of brown silty CLAY. Trace of very fine grain sand.
3.5 - 5	3-5-6	Same as above.
6 - 7.5	2-2-2	Soft black silty CLAY. Black sponge-like substance @ 7.5' (.5')
		Fill discontinues @ approx. 8'.
8.5 - 10	3-5-7	Brown sandy SILT. Trace of fine grain sand. Dry,
11 - 12.5	3-5-7	Brown fine grain SAND. Dry.
13.5 - 15	1-1-1	Soft brown-gray silty CLAY. Trace of very fine grain sand. Moist.
16 - 17.5	3-6-6	Brown very fine grain SAND. Dry.
18.5 - 20	2-3-3	Brown-gray silty CLAY: mottled. Trace of very fine grain sand. Moist.
21 - 22.5	1-1-8	Gray fine grain SAND. Wet.
23.5 - 25	7-19-25	Same as above.
26 - 27.5	6-9-29	Same as above.
28.5 - 30	5-10-11	Same as above.
33.5 - 35	6-8-12	Same as above: oily sheen @ 34'
		E.O.B. @ 35'

 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 2-17-87


 Prepared by
 Tim Maley

Depth (ft)

: [

Description

0-3

Borina						
	/We11 !	No	0-3			
LOCET1	on si	ite o				
OWE A.F	TFDL					
Top of	Inner	Casir	ig El	• v .	NA	
Drilli	ng Pirs	n Pa	ox dr	111 ind	a a	
prille	r Jei	rry He	MMOD			
Start	Comp	letior	Dat	es 2/	17. 27	17/
Type o	f Rig	Mohi	10 9	-61		- '/
Method	of Dr	111100		1/4"	7 D	
holl	ow ster		'	3/4	1.0.	_
	<u> </u>	- augu				
			DAT	-		
Hole D	iam. Depth	8 in.				
Boring	Depth	20	0 ft	•		
Casing	ana so	creen	Diam			
Screen	Interv	val				
Screen	Type			_		
Sticku	p					_
Well T	р УР•					_
Wall "	onstruc	-+ : :				
	- 115 C C C	- L I ON :	•			
111	ter Pac	· ^				
348	*.—					
910	uc					
Loc	k No.					
		TE	T DA	TA		
Static	Water Water est	Elev.	·		4t•	
Static	Water	Elev.	. —	D	ate 💳	
Slug T	est		Yes		No	_
Test D	ate		_		•	_
Kudrau	lic Con	nducti	vitu			_
, _+ h			,			_
OCMUE						
						_
			~~~	ITT		
	,	Kater	CONT			
Sample					No	,
Sample					No.	
Sample No. of	s Takes	n •s	Yes_		No.	
Sample No. of Types	s Takes Sample of Sams	n •s pl•s	Yes_		No	
	s Takes Sample of Sams	n es ples	Yes_	_ <del></del>		
Date S	s Taker Sample of Samp	n es ples	Yes_			
Date S	s Takes Sample of Samp ampled	n es ples	Yes_			
Date S	s Taker Sample of Samp	n es ples	Yes_			
Date S	s Takes Sample of Samp ampled	n es ples	Yes_			
Date S Sample Sample	s Taker Sample of Samp ampled rs s Analy	n es ples yzed (	Yes_	x	No	
Date S Sample Sample	s Taker Sample of Samp ampled rs s Analy	n es ples yzed (	Yes_	x	No	
Date S Sample Sample Split Recipi	s Taker Sample of Samp ampled rs s Analy	yzed i	Yes_	x	No	
Date S Sample Sample Split Recipi	Sampled rs Sampled rs Sampled rs	yzed i	Yes_	x	No	
Date S Sample Sample Split Recipi	Sampled rs s Analy Sampled ra cont (a)	n ples ples yzed i s(soi) Geragh	Yes_	X Milli	No or for	th
Date S Sample Sample Split Recipi Vill	Sampled rs Analy Sampled cont (age of ts S)	yzed i	Yes_	X Mills	No er for	th
Date S Sample Sample Split Recipi Vill	Sampled rs Sampled rs Sampled rs s Analy ent ( age of	yzed i	Yes_	X Mills	No er for	th
Date S Sample Sample Split Recipi Vill	Sampled rs Analy Sampled cont (age of ts S)	yzed i	Yes_	X Mills	No er for	tl
Date S Sample Sample Split Recipi Vill	Sampled rs Sampled rs Sampled rs s Analy ent ( age of	yzed i	Yes_	X Milli soil enal	No er for	th
Date S Sample Sample Split Recipi Vill Commen from	Sampled rs s Analy Sampled rs s Analy ts Si borinc	yzed i s(soi) Gerage Sauge ubsur: g 10 -	Yes_ for	X Milli soil enal	No er for	th
Date S Sample Sample Split Recipi Vill Commen from	Sampled rs Sampled rs Sampled rs s Analy ent ( age of	yzed i s(soi) Gerage Sauge ubsur: g 10 -	Yes_ for	X Milli soil enal	No er for	th
Date S Sample Sample Split Recipi Vill Commen from	Sampled rs s Analy Sampled rs s Analy ts Si borinc	yzed i s(soi) Gerage Sauge ubsur: g 10 -	Yes_ for	X Milli soil enal	No er for	th
Date S Sample Sample Split Recipi Vill Commen from	Sampled rs s Analy Sampled rs s Analy ts Si borinc	yzed i s(soi) Gerage Sauge ubsur: g 10 -	Yes_ for	X Milli soil enal	No er for	th
Date S Sample Sample Split Recipi Vill Commen from	Sampled rs s Analy Sampled rs s Analy ts Si borinc	yzed i s(soi) Gerage Sauge ubsur: g 10 -	Yes_ for	X Milli soil enal	No er for	th
Date S Sample Sample Split Recipi Vill Commen from	Sampled rs s Analy Sampled rs s Analy ts Si borinc	yzed i s(soi) Gerage Sauge ubsur: g 10 -	Yes_ for	X Milli soil enal	No er for	th

site Dead C	reek Site-	Boring/Well No0-3
Sample Dept	h Blow Cou	nt Description
		Well vegetated clay cap.
1 - 2	5-5-7	FILL consisting of dense brown silty CLAY. Trace of very fine grain sand.
3.5 - 5	2-1-2	Same as above.
6 - 7.5	1-2-2	Same to 6.5' 6.5-8' Black sponge-like substance. Sludge. Fill discontinues @ approx. 8'.
8.5 - 10	3-6-7	Brown very fine grain SAND. Trace of silt. Dry.
11 - 12.5	3-2-3	Same as above.
13.5 - 15	3-2-3	Brown silty CLAY. Trace of very fine grain sand. Slightly mottled. Moist.
16 - 17.5	3-5-8	Brown silty very fine grain SAND. Dry.
18.5 - 20	7-7-7	Brown very fine grain SAND. Wet @ 20'.

Project Name	Dead Creek	Boring/Well No. 0-4
Project No. II		Location Site O
Date Prepared	2-17-87	Owner IEPA
Prepared by T	im Maley	Top of Inner Casing Elev. NA
		Drilling Firm Fox drilling
Depth (ft)	Description	Driller Jerry Hammon
		Start & Completion Dates $\frac{2}{17}$ , $\frac{2}{17}$ /87
		Type of Rig Mobile B-61
	0 – 4	
		Method of Drilling 3 3/4" I.D. hollow stem augers
°7 <b>////</b> //	<b>^</b>	"OLION SCOM REGALS
1	YYYYYYYYY	WELL DATA
7177777	//////////////////////////////////////	
<b>-7</b>	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Hole Diam. 8 in.
-177777	<u> </u>	Boring Depth 20.0 ft.
5	BLACK	SANDY CLAY Casing and Screen Diam.
4		Screen Interval
-		Screen Type
-		Stickup Well Type
4		Well Construction:
10—	OARK C	Filter Dark
	DARK G	Seal
-	BROWN	FINE SAND Grout
4		Lock No.
		TEST DATA
15-		Static Water Elev Date
73-3	BROWN	AND GRAY Static Water Elev. Date
<b>F.</b>	SILTY	CLAY Slug Test Yes No
		Test Date
V 20	GHAT V	ERY FINE SAND Hydraulic Conductivity
20		Other
		WATER QUALITY
		Samples Taken YesNo_X
		No. of Samples
		Types of Samples
		Date Sampled
		Samplers
		Samples Analyzed for
		<del></del>
		Split Samples(soil)Yes X No
		Recipient Geraghty & Miller for the
		Village of Sauget
		Comments Subsurface soil samples
		from boring 0 - 10'analysed for
		HSL compounds.
		2004200
		REMARKS Strong organic odor
		Ground elev. 412.62

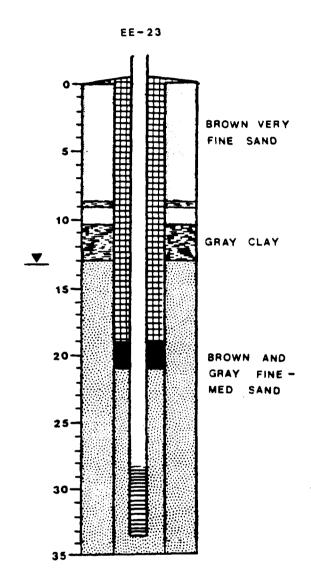
Site Dead C	reek Site-O	Boring/Well No. 0-4
Sample Dept	h Blow Coun	t Description
		Well vegetated clay cap.
1 - 2.5	1-2-2	FILL consisting of dense brown silty CLAY. Trace of fine grain sand.
3.5 - 5	6-3-4	Same as above to 4'.  4-5.5' Black clay-like sludge.
6 - 7.5	1-3-4	Dark greenish-gray very fine grain SAND. Trace of silt. Dry.
8.5 - 10	4-6-8	Dark brown very fine grain SAND. Trace of clay and silt in thin layers.
11 - 12.5	4-4-5	Light brown fine to medium grain SAND. Dry.
13.5 - 15	3-4-5	Brown very fine grain SAND. Trace of silt. Dry.
16 - 17.5	1-3-4	Brown-gray silty CLAY. Trace of very fine grain sand. Dry. Soft black silty clay layer $\theta$ 17 1/4' $(-2^{n})$
18.5 - 20	6-6-7	Gray very fine grain SAND. Trace of silt and medium grain sand. Wet $ heta$ 20%.
		E.O.B. @ 20'

Project Name	Dead Creek			Boring/Well No. 0-5
Project No.	IL 3140			Location Site O
Date Prepared	2-17-87	<del></del>		Owner IEPA
Prepared by	Tim Maley			Top of Inner Casing Elev. NA
· -				Drilling Firm Fox drilling
Depth (ft)	Descrip	tion		Driller Jerry Hammon
				Start & Completion Dates 2/17, 2/17/87
				Type of Rig Mobile B-61
	0 – 5			
				Method of Drilling 3 3/4" I.D.
o –vM	**************************************			hollow stem augers
-₩				
- <b>I</b> W				WELL DATA
<b>-</b> ₩	<b>*************************************</b>	FILL		Hole Diam. 8 in.
<b>-</b> ₩	<b>YYYYYYYYY</b>			Boring Depth 20.0 ft.
IMY	<b>YYYYYYYYYYY</b>			Casing and Screen Diam.
3 - 344	10000000000000000000000000000000000000			Screen Interval
		=		Screen Type
				Stickup
				Well Type
-		BROWN FINE	SAND	Well Construction:
10-				Filter Pack
-				Seal
-				Grout
		-	- 	Lock No.
1.7		BROWN AND	GRAY -	
		SILTY CLAY	_	TEST DATA
13		0.2		Static Water Elev Date
_ 1		45 AV VESV		Static Water Elev Date
	1	GRAY VERY		Slug Test Yes No
		FINE SAND		Test Date
. 1	1			Hydraulic Conductivity
20	<u> </u>			Other
		•		WATER QUALITY
		-		Annia Askan Usa W. W
				Samples Taken Yes No X
				No. of Samples Types of Samples
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				Date Sampled
				Samplers
				Samples Analyzed for
				Split Samples(soil)Yes X No
				Recipient Geraghty & Miller for the
				Village of Sauget
				Comments Subsurface soil samples from boring 8.5 - 20' analysed for
				HSL compounds.
				22KAZE
				Strong organic odor
				Ground elev. 413.12

Site Deed C	reek Site-	Boring/Well No. 0-5	
Sample Depth Blow Count		Description	
		Well Vegetated clay cap.	
1 - 2.5	1-2-2	FILL consisting of soft brown silty CLAY.	
3.5 - 5	1-1-1	Same as above.  Fill discontinues @ approx. 5.5'.	
6 - 7.5	4-4-4	Brown very fine grain SAND. Some silt. Dry.	
8.5 - 10	2-5-7	Brown fine grain SAND.	
11 - 12.5	3-4-3	Same as above.	
13.5 - 15	2-3-4	Brown-gray silty CLAY. Some interbedding of silty very fine grain sand. Dry.	
16 - 17.5	2-2-2	Gray very fine grain SAND. Trace of silt. Moist @ 17'.	
18.5 - 20	3-6-8	Same as above. Wet.	

 Project Name
 Dead Creek

 Project No.
 IL 3140


 Date Prepared
 2-18-87

 Prepared by
 Tim Maley

Depth (ft)

ΞT

Description



Boring/Well No. 0-6/EE-23
Location Site O
Owner IEPA
Top of Inner Casing Elev. 410.67
Drilling Firm Fox drilling
Driller Jerry Hammon Start & Completion Dates 2/18, 2/18/87
Start & Completion Dates 2/18, 2/18/87
Type of Rig Mobile B-61
Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary
hollow stem augers. Rotary
WELL DATA
Hole Diam. 8 in.  Boring Depth 35.0 ft.  Casing and Screen Diam. 2 in.  Screen Interval 28.5 - 33.5 ft.  Screen Type stainless steel 0.01" slot
Boring Depth 35.0 ft.
Casing and Screen Diam. 2 in.
Screen Interval 28.5 - 33.5 ft.
Screen Type stainless steel 0.01" slot Stickup 1.58 ft. Well Type Monitoring
Stickup 1.58 ft.
Well Type Monitoring
Well Construction:
Filter Pack 33.5 - 21 ft. Natural
Seal 21 - 19 ft.
Grout 19 ft. to surface
Filter Pack 33.5 - 21 ft. Natural Seal 21 - 19 ft. Grout 19 ft. to surface Lock No. 2834
TEST DATA
Static Water Elev. 395.95   Date 3-26-87
Static Water Elev. 397.77 Date 5-11-87
Slug Test Yes No X
Test Date
Budeaulie Canductivitu
Other pH = 7.0
Other pH = 7.0  Cond. = 1300 umhos Temp. = 56° F
Hydraulic Conductivity Other pH = 7.0  Cond. = 1300 umhos Temp. = 56° F  Cloudy, yellowish green, slight odor
Other pH = 7.0  Cond. = 1300 umhos Temp. = 56° F  Cloudy, yellowish green, slight odor
Other pH = 7.0  Cond. = 1300 umhos Temp. = 56° F  Cloudy, yellowish green, slight odor  WATER QUALITY
Cloudy, yellowish green, slight odor WATER QUALITY
Cloudy, yellowish green, slight odor WATER QUALITY
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round
Cloudy, yellowish green, slight odor WATER QUALITY
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E 6 E
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E 6 E
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E 6 E
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analyzed for HSL compounds
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analyzed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget  Comments Subsurface soil samples
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analyzed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the  Village of Sauget  Comments Subsurface soil samples from boring 15 - 25 feet analyzed
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget  Comments Subsurface soil samples
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget  Comments Subsurface soil samples from boring 15 - 25 feet analyzed
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analyzed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the  Village of Sauget  Comments Subsurface soil samples from boring 15 - 25 feet analyzed
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget  Comments Subsurface soil samples from boring 15 - 25 feet analyzed  for HSL compounds.
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget  Comments Subsurface soil samples from boring 15 - 25 feet analyzed  for HSL compounds.
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget  Comments Subsurface soil samples from boring 15 - 25 feet analyzed  for HSL compounds.
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget  Comments Subsurface soil samples from boring 15 - 25 feet analyzed  for HSL compounds.
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget  Comments Subsurface soil samples from boring 15 - 25 feet analyzed  for HSL compounds.
Cloudy, yellowish green, slight odor  WATER QUALITY  Samples Taken Yes X No No. of Samples 1 round  Types of Samples groundwater  Date Sampled 3-24-87  Samplers E E E  Samples Analysed for HSL compounds  Split Samples Yes X No Recipient Geraghty & Miller for the Village of Sauget  Comments Subsurface soil samples from boring 15 - 25 feet analyzed  for HSL compounds.

Site Dead Creek Site-O

Boring/Well Ro. 0-6/Well #EE-23

Sample Depth Blow Count		Description		
1 - 2.5	1-2-1	Brown very fine grain SAND. Trace of silt. Dry.		
3.5 - 5	1-2-1	Same as above.		
6 - 7.5	2-3-2	Same as above. Increased amount of silt.		
8.5 - 10	1-2-2	Same as above. Brown-gray silty CLAY layer @ 8.5-9'.		
11 - 12.5	1-1-2	Soft gray silty CLAY. Trace of very fine grain sand. Moist.		
13.5 - 15	1-1-3	Brown fine to medium grain SAND. Wet.		
16 - 17.5	2-6-10	Brown very fine grain SAND. Trace of silt. Wet. Two thin gray silty clay layers $(-1^n)$ @ 16 $3/4^r$ .		
18.5 - 20	2-6-10	Brown fine to medium grain SAND. Wet.		
21 - 22.5	8-3-14	Brown medium grain SAND. Trace of coarse grain sand and small gravel. Wet.		
23.5 - 25	4-7-10	Same as above.		
26 - 27.5	4-8-16	Gray fine to medium grain SAND. Trace of small gravel. Wet.		
28.5 - 30	4-6-9	Same as above.		
33.5 - 35	5-7-11	Same as above.		
		E.O.B. @ 35'		

Location Site O
Owner IFPE 
 Project Name
 Dead Cree

 Project No.
 IL 3140

 Date Prepared
 2-19-87

 Prepared by
 Tim Maley
 Dead Creek Owner IEPA
Top of Inner Casing Elev. 411.00 IEPA Drilling Firm Fox drilling Driller Jerry Hammon
Start & Completion Dates 2/19, 2/19/87 Depth (ft) Description Type of Rig Mobile B-61 EE-24 Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary WELL DATA Hole Diam. 8 in. Boring Depth 33.0 ft. Casing and Screen Diam. 2 in. Screen Interval 28 - 33 ft.
Screen Type stainless steel 0.01" slot FILL Stickup 0.98 ft.
Well Type Monitoring Well Construction: Filter Pack 33 - 24 ft.

Seal 24 - 22.5 ft.

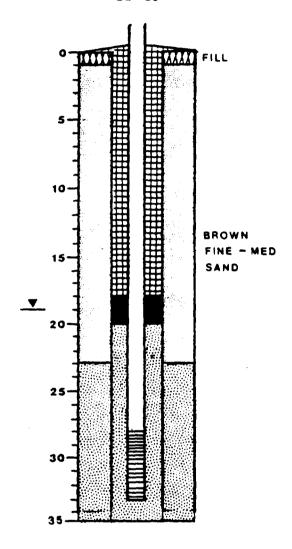
Grout 22.5 ft. to surface
Lock No. 2834 10 Lock No. 2834 BROWN CLAY TEST DATA Static Water Elev. 395.04 Date 3-26-87 Static Water Elev. 396.84 Date 5-11-87 15 Slug Test Yes X
Test Date 5-12-67 No___ Test Date 5-12-87
Hydraulic Conductivity 0.65 x10 cm/sec Other pH = 7.2

Cond. = 4200 umhos Temp. = 58° F

Very cloudy, yellowish, slight odor 20. BROWN VERY WATER QUALITY FINE - MED Samples Taken Yes X No_ SAND No. of Samples 1 round 25-Types of Samples groundwater Date Sampled 3-24-87
Samplers E & E
Samples Analyzed for HSL compounds 30. 33 Split Samples Yes Recipient Geraghty & Miller for the Village of Sauget Comments REMARKS

Site	Dead	Creek	Site-0
------	------	-------	--------

## Boring/Well No. 0-7/Well #EE-24


Sample Depth I	Blow Count	Description
		Well vegetated clay cap.
1 - 2.5	23-22-22	FILL consisting of black silty CLAY. Some crushed limestone, gravel, fine to coarse grain sand, and silt.
		Fill discontinues @ 3'.
3.5 - 5	6-9-11	Brownish-gray fine grain SAND. Trace of silt. Dry.
6 - 7.5	4-4-4	Gray very fine grain SAND. Some silt. Dry.
8.5 - 10	6-7-7	Brown fine to medium grain SAND. Dry.
11 - 12.5	0-2-8	Brown-silty CLAY. Slightly mottled. Trace of fine grain sand. Moist.
13.5 - 15	6-7-9	Gray very fine grain SAND. Very moist.
16 - 17.5	7-8-10	Brown medium grain SAND. Trace of coarse grain sand and small to medium gravel. Wet.
18.5 - 20	3-2-3	Same as above.
21 - 22.5	3-4-13	Brown very fine grain SAND. Trace of silt. Wet.
23.5 - 25	11-15-25	Brown medium grain SAND. Trace of clay @ 24'. Trace of coarse sand and small gravel. Wet.
26 - 27.5	6-3-5	Same as above.
28.5 - 30	NA	Gray medium grain SAND. Wet.
		E.O.B. @ 33'

Project Name Dead Creek
Project No. IL 3140
Date Prepared 2-20-87
Prepared by Tim Maley

Depth (ft)

Description

EE-25



Boring/Well No. O-8/EE-25 Location Site O
Location Site O
Owner IEPA
Top of Inner Casing Elev. 411.25
Drilling Firm Fox drilling Driller Jerry Hammon Start & Completion Dates 2/20, 2/20/87
Driller Jerry Hammon
Start & Completion Dates 2/20, 2/20/87
Type of Rig Mobile 8-61
Method of Drilling 3 3/4" I.D.
hollow stem augers, Rotary
WELL DATA
Hole Diam. 8 in. Boring Depth 35 ft.
Boring Depth 35 ft.
Boring Depth 35 ft. Casing and Screen Diam. 2 in. Screen Interval 28 - 33 ft.
Screen Interval 28 - 33 ft.
Screen Type stainless steel 0.01" slot
Screen Type stainless steel 0.01" slot Stickup 1.72 ft.
Well Type monitoring
Well Construction:
Filter Pack 33 - 20 ft. Natural Seal 20 - 18 ft.
Seal 20 - 18 ft.
Grout 18 ft. to surface
Grout 18 ft. to surface Lock No. 2834
TEST DATA
Static Water Elev.       395.73       Date 3-26-87         Static Water Elev.       397.39       Date 5-11-87         Slug Test       Yes X       No         Test Date 5-12-87
Static Water Elev. 397.39 Date 5-11-87
Slug Test Yes X No
Test Date 5-12-87
dvdraulic Conductivity lo x lo cm/sec
other oH =7.0
Cond. = 1400 ushos Teap. = 56° F
Other pH =7.0  Cond. = 1400 umhos Temp. = 56° F  Cloudy, yellowish, slight odor
WATER QUALITY
Camples Taken Vec V Ne
Samples Taken Yes X No
Tunes of Cambon Around
Types of Samples groundwater
Date Sampled 3-24-47
Samplers E & E
Samples Analyzed for HSL compounds
Split Samples Yes X No
Split Samples Yes X No Recipient Geraghty & Miller for the
Village of Sauget
Comments
remarks

4110	Dood	Crack	Site-O
3160		CIGGX	2154-0

Boring/Well No. 0-8/Well #EE-25

Sample Depth	Blow Count	Description
		Crushed limestone surface.
		* Straight drill to 23.5
		Approximate stratigraphy based on auger cuttings.
		0.5'-1.0' Black silty CLAY. Fill.
		$\frac{1.0-20+'}{\text{drilling ~19'}}$ Brown fine grain SAND. Trace of silt. Water level while
23.5 - 25	11-16-15	Brown fine to medium grain SAND. Wet.
28.5 - 30	9-17-17	Brown-gray fine to medium SAND. Wet.
33.5 - 35	5-8-13	Brown medium grain SAND. Trace of coarse grain sand and small to medium gravel.
		E.O.B. @ 35'

 
 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 2-26-87

 Prepared by
 Kevin Phillips
 Boring/Well No. Location Site O
Owner IEPA
Top of Inner Casing Elev. Drilling Firm Fox drilling Depth (ft) Description Driller Robby Crachy, Dan Sewell, Kevin Phillips Start & Completion Dates 2/26, 2/26/87 0 - 9Type of Rig NA Method of Drilling Hand auger FILL WELL DATA Hole Diam. 4 in.
Boring Depth 20.0 ft.
Casing and Screen Diam. BROWN AND GRAY Screen Interval FINE SAND Screen Type _ Stickup Well Type 10 Well Construction: Pilter Pack GRAY AND BROWN Seal SANDY CLAY Grout Lock No. BROWN SANDY SILT <u>▼</u> 15 TEST DATA Static Water Elev. ____ __ Date BROWN FINE SAND Yes Slug Test Test Date 20 Hydraulic Conductivity Other WATER QUALITY Samples Taken Yes_ No. of Samples Types of Samples Date Sampled Samplers Samples Analyzed for Recipient Geraghty & Miller for the
Village of Sauget from boring 0 - 10' and 10 - 15' analyzed for HSL compounds. Comments REMARKS Ground elev. 411.07

Site Dead Creek Site-O  Sample Depth Blow Count		Boring/Well Ho. 0-9  Description	
1 - 2.5	Hand auger	FILL consisting of red-brown mottled silty CLAY. Trace of fine grain sand and roots. Moist.	
3.5 - 5	Hand auger	3.5-4' FILL consisting of grayish-brown silty CLAY. Trace of fine grain SAND. Trace of black hardened material throughout.	
		Fill discontinues @ 4'.	
		4-5' Brownish-gray very silty fine grain SAND. Some silt. Moist.	
6 - 7.5	Hand auger	Loose grayish-brown very silty fine grain SAND. Thin reddish or black-gray staining in horizontal layers.	
8.5 - 10	Hend auger	Firm grayish-brown very silty fine grain SAND. Similiar stain as seen in sample above. Very moist. Oily sheen.	
11 ~ 12.5	Hand auger	Grayish-brown sandy silty CLAY. Some silt. Little fine grain sand. Oily sheen in very moist layers.	
13.5 - 15	Hand	Brown very sandy SILT. Some fine grain sand. 2" fine grain sand layer @	

14.5' stained red-orange. Black-gray stained layers throughout.

Brown very silty fine grain SAND. Wet.

Same as above. Oily sheen in water.

E.O.B. @ 20'

auger

Hand auger

Hend auger

16 ~ 17.5

18.5 - 20

Project Name Dead Creek		Boring/Well No. 0-10
Project No. IL 3140	<del></del>	Location Site O
Date Prepared 2-26-87	<del></del>	Owner IEPA
Prepared by Kevin Phillips	<del></del>	Top of Inner Casing Elev. NA
		Orilling Firm Fox drilling
Depth (ft) Descrip	ption	Driller Kevin Phillips and Dan Sewall
		Start & Completion Dates 2/26, 2/26/87
		Type of Rig NA
0 - 10		
		Method of Drilling Hand auger
0 ~1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	1	
+**************************************		WELL DATA
-WWW.WWW.		THE CALL
	FILL	Hole Diam. 4 in.
- <b>////////////////////////////////////</b>	7 166	Boring Depth 14 ft.
5_ <b>/</b> /////////		Casing and Screen Diam.
		Screen Interval
377777777777777		Screen Type
	GREENISH - GRAY	Stickup
	FINE SAND -	Well Type
<del></del>	GREENISH - GRAY	Well Construction:
10	SILT	Filter Pack
		Seal
	BROWN FINE - MED	Grout
	SAND -	Lock No.
14	_	TEST DATA
		J=.
		Static Water Elev Date
		Static Water Elev Date
		Slug Test Yes No
		Test Date Hydraulic Conductivity
		Other
		WATER QUALITY
		1
		Samples Taken Yes No X
		No. of Samples Types of Samples
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		Data Samiad
		Date Sampled
		Samples Analyzed for
	•	
		delia demoles was w
		Split Samples Yes X No
		Recipient Geraghty & Miller for the Village of Sauget
		Comments Subsurface soil samples
		from boring 5 - 10' and 10 - 15'
		analysed for HSL compounds.
		revares
		Strong organic odor

2110	Dead	Crack	Site-O
316	Desc	CIUCK	3114-0

Boring/Well No. 0-10

Sample Depth	a Blow Coun	Description
0 - 1	Hand auger	FILL consisting of red-brown sandy silty CLAY
1 - 3.5	Hand auger	FILL consisting of black cinder-like material. Dry.
3.5 - 5	Hand auger	FILL consisting of black cinders. Dry.
5 - 7	Hand auger	FILL consisting of black to greenish-black sludge-like material and soft silty clay. Wet.
1		Fill discontinues @ 7'.
7 - 8.5	Hand auger	Greenish-gray fine grain SAND. Black staining throughout. Wet.
8.5 - 10	Hand auger	Greenish-gray very sandy SILT. Black staining. Very moist.
10 - 14	Hand auger	Light brown fine to medium grain SAND. Moist. No apparent staining.
		E.O.B. @ 14'

Project Name Dead Creek		Boring/Well No. P-1
Project No. IL 3140 Date Prepared 2-11-87	<del></del>	Location Site P
Date Prepared 2-11-87	<del></del>	Owner IEPA
Prepared by Tim Maley		Top of Inner Casing Elev. NA
m		Drilling firm Fox drilling
Depth (ft) Descrip	ction	Driller Jerry Hammon
		Start & Completion Dates 2/11, 2/11/87
		Type of Rig Mobile B-61
P - 1		
		Method of Drilling 3 3/4" I.D.
0705555	•	hollow stem augers
		WELL DATA
<b>*************************************</b>		Hole Diam. 8 in.
<b>188888888</b>		Boring Depth 35.0 ft.
5-888888	FILL	Casing and Screen Diam.
<b>88888</b>		Screen Interval
		acteen type
		Stickup
<b>*******</b>		well Type
		Well Construction:
10-18888888		Filter Pack
<b>*********</b>		5041
		31046
		Lock No.
RATE STATE	BROWN AND GRAY	ATAD TEST
15-14-5-2	SILTY CLAY	44.45. Makes = 11
		Static Water Elev. Date Static Water Elev. Date
		Static water Elev. Date
-	DARK GRAY SILT	Slug Test Yes No Test Date
		Hydraulic Conductivity
20-		
		Other
		<del></del>
		<del></del>
		WATER QUALITY
		MATER GOUNTLE
25-		Samples Taken Ves No V
	BROWN FINE - MED	Samples Taken Yes No X No. of Samples
	BROWN	No. of Samples Types of Samples
	2445	thbes of sembles
	SAND	
		Date Sampled
30-		Samplers
		Samples Analyzed for
		Split Samples Yes No X
38 ——————————		Recipient
		Comments Subsurface soil samples
		from boring 0 - 10' and 25 - 35'
		analyzed for HSL compounds.
		THE STATE SAL HAN COMPAGNOS.
		remarks
		Ground elev. 418.41
		314414 4441 144118

Site Dead Creek Site-P Boring/W	fell No.	P-1
---------------------------------	----------	-----

Sample Depth	Blow Count	Description
		Crushed limestone on surface.
1 - 2.5	4-3-3	FILL consisting of black sandy CLAY with crushed limestone, slag gravel coal, and cinders.
3.5 - 5	4-3-3	Same as above.
5 - 7.5	5-7-25/3	FILL consisting of various debris including paper and plastic products, slag gravel, asphalt, and silty clay. Large obstruction encountered $\theta$ 7.5%.
8.5 - 10	6-12-10	FILL consisting of brown silty CLAY with various debris including paper products, small gravel, and fine to coarse grain sand. Wet.
11 - 12.5	6-17-3	Same as above.
		FILL discontinues @ 13.5'
13.5 - 15	3-6-7	Dark brown-dark gray silty CLAY. Slightly mottled. Trace of very fine grain sand. Dry.
16 - 17.5	2-4-6	Same as above to 17'.  4" layer of gray fine grain sand @ 17-17 1/3'. Dry. Then dark gray SILT. Trace of very fine grain sand. Dry.
18.5 - 20	3-5-8	Dark gray very fine grain SAND. Trace of silt. 2" gray silty clay layer @ 19'. Then light gray fine to medium grain SAND. Dry.
21 - 22.5	6-10-12	Brown medium grain SAND. Trace of coarse grain sand and small gravel. Dry.
23.5 - 25	6-13-12	Same as above.
18.5 - 30	2-5-7	Same as above.
3.5 - 35	3-5-10	Same as above. Wet.
		E.O.B. @ 35'.

 
 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 2-11-87

 Prepared by
 Tim Maley
 Boring/Well No. P-2 Location Site P Top of Inner Casing Elev. NA Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 2/11, 2/11/87 Depth (ft) Description Type of Rig Mobile 8-61 P-2Method of Drilling __3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. 8 in.
Boring Depth 40.0 ft.
Casing and Screen Diam. Screen Interval Screen Type Stickup Well Type FILL Well Construction: 10 Filter Pack Seal Grout Lock No. TEST DATA 15 Static Water Elev. _ _ Date Static Water Elev. Slug Test Test Date Hydraulic Conductivity 20 Other WATER QUALITY Samples Taken No_X Yes___ No. of Samples Types of Samples ▼ 30-Date Sampled Samplers BROWN Samples Analyzed for FINE - MED SAND Split Samples 35-Yes Recipient Comments 40 REPLAKES Ground elev. 423.62

Site Dead C	reek Site-P	Boring/Well No. P-2
Sample Dept	h Blow Count	Description
		Crushed limestone on surface.
1 - 2.5	6-6-7	FILL consisting of black-brown sandy CLAY with various debris including paper and plastic products, wood chips, slag, small gravel, fine to coarse grain sands, and brick fragments. Dry.
3.5 - 5	3-3-7	Same as above.
5 - 7.5	3-4-4	Same as above.
3.5 - 10	2-6-6	Same as above.
11 - 12.5	5-5-7	Same as above.
13.5 - 15	7-7-8	Same as above.
16 - 17.5	4-3-14	Same as above. Moist.
18.5 - 20	6-6-8	Same as above.
21 - 22.5	6 - 50/3	Same as above. Spoon refusal.
23.5 - 25	10-6-28	Same as above. Poor recovery.
26 - 27.5	3-5-5	No recovery. Probably same as above.
		FILL apparently discontinues @ 28'.
28.5 - 30	6-9-12	Dark gray fine to medium grain SAND. Moist.
13.5 - 35	7-11-10	Brown medium grain SAND. Wet.
38.5 - 40	7-12-14	Dense brown fine to medium SAND. Wet.
	1	

 
 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 2-11-87

 Prepared by
 Tim Maley
 Boring/Well No. P-Location Site P Owner IEPA
Top of Inner Casing Elev. Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 2/11, 2/11/87 Depth (ft) Description Type of Rig Mobile 8-61 P - 3 Method of Drilling 3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. 8 in.
Boring Depth 30.0 ft. Casing and Screen Diam. Screen Interval FILL Screen Type Stickup Well Type Well Construction: Filter Pack 10 Seal Grout Lock No. TEST DATA Static Water Elev.
Static Water Elev.
Yes Date Date Test Date Hydraulic Conductivity Other _ 20 BROWN FINE SAND WATER QUALITY **▼** 25 Yes___ Samples Taken No. of Samples Types of Samples Date Sampled 30 Samplers Samples Analyzed for Yes____ Split Samples Recipient __ Comments Ground elev. 419.36

Site Dead C	reek Site-P	Boring/Well No. P-3
		<del> </del>
sample Dept	h Blow Coun	t Description
		Black cinder fill on surface.
2.5	7-9-12	FILL consisting of black and brown sandy clay with various debris material including paper products, wood chips, cloth, tin, rubber, slag, cinders, crushed limestone, an off-white crystalline substance, hay, and fine to coarse grain sand. Dry.
1.5 - 5	3-3-30/6	FILL - same as above.
5 - 7.5	3-3-6	FILL - same as above.
3.5 - 10	6-18-33	FILL - same as above.
11 - 12.5	12-12-13	FILL - poor recovery. Strong moth ball (naphalene) odor.
3.5 - 15	5-7-15	No recovery.
16 - 17.5	6-17-17	FILL - same as above.
		Fill discontinues @ approx. 16.5'.
		Gray silty very fine grain SAND. Dry.
8.5 - 20	5-7-9	Brown fine grain SAND. Dry.
21 - 22.5	4-6-9	Same as above.
23.5 - 25	3-3-5	Same as above. Moist.
26 - 27.5	4-10-8	Same as above. Wet.
28.5 - 30	5-9-11	Same as above. Wet.

 
 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 2-12-87

 Prepared by
 Tim Maley
 Boring/Well No. P-4 Location Site P Owner IEPA Top of Inner Casing Elev. Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 2/12, 2/12/87 Depth (ft) Description Type of Rig Mobile B-61 P - 4 Method of Drilling 3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. 8 in.
Boring Depth 35.0 ft.
Casing and Screen Diam. Screen Interval Screen Type Stickup Well Type Well Construction: Filter Pack FILL Seal Grout Lock No. TEST DATA Static Water Elev. _ Date Static Water Elev. Slug Test Test Date Hydraulic Conductivity Other WATER QUALITY Samples Taken No. of Samples Types of Samples BROWN FINE - MED Date Sampled _ 30 Samplers SAND Samples Analyzed for 35 Split Samples Yes_ No X Recipient _ Comments Subsurface soil samples from boring 0 - 10' and 25 - 35' analyzed for HSL compounds. REMARKS Slight organic odor. Ground elev. 424.65

Site Dead Creek Site-P	Boring/Well No.	P-4
------------------------	-----------------	-----

Sample Depth B	low Count	Description
		fill material on surface.
- 2.5	3-3-5	FILL consisting of dark brown-black silty clay; some crushed limestone, small gravel, and fine to medium grain sand.
.5 - 5	4-9-8	FILL $\sim$ same as above with more debris material including paper products and wood chips.
- 7.5	3-4-6	FILL - same as above.
.5 - 10	5-7-22	FILL - same as above.
1 - 12.5	6-7-7	fill - poor recovery.
3.5 - 15	2-9-5	No recovery.
.6 - 17.5	7-14-19	FILL consisting of brown silty CLAY. Some medium-coarse grain sand and small gravel. Trace of a pale yellow solid (hard and brittle) substance Dry.
8.5 - 20	2-10-2	FILL - same as above. Trace of paper products and wood chips.
1 - 22.5	13-27-17	FILL - same as above with additional debris including asphalt, slag, crushed limestone, wire, and gravel.
3.5 - 25	4-6-8	FILL - same as above.
		Fill discontinues at approx. 26'.
6 - 27.5	3-4-4	Brown fine grain SAND. Trace of silt. Moist.
8.5 - 30	5-10-10	Same as above. Wet.
1 - 32.5	3-6-10	Brown fine to medium grain SAND. Wet.
3.5 - 35	5-10-13	Same as above. Trace of coarse grain sand. Wet.
		E.O.B. @ 35'

Project Name Dead Creek
Project No. IL 3140 Boring/Well No. P-5 Location Site P Date Prepared 2-12-87
Prepared by Tim Maley Owner IEPA Top of Inner Casing Elev. Drilling firm Fox drilling Driller Jerry Hammon Start & Completion Dates 2/12, 2/12/87 Depth (ft) Description Type of Rig Mobile B-61 P - 5 Method of Drilling 3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. 8 in.
Boring Depth 35.0 ft.
Casing and Screen Diam. Screen Interval Screen Type Stickup Well Type Well Construction: FILL Filter Pack Seal Grout Lock No. TEST DATA Static Water Elev. Date Static Water Elev. Slug Test Test Date Hydraulic Conductivity Other WATER QUALITY 25 Samples Taken Yes No X No. of Samples Types of Samples BROWN FINE - MED Date Sampled SAND 30 Samplers Samples Analyzed for Split Samples Yes_ 35 Recipient
Comments Subsurface soil samples
from boring 10 - 25' analyzed for HSL compounds. REMARKS Slight organic odor Ground elev. 422.98

Site Dead Creek Site	•-P	Boring/Well	No.	P-5	

ample Depth	Blow Cour	Description Description
		Grass field area on surface.
- 2.5	4-5-7	FILL consisting of loose brown-black silty clay with crushed limestone brick fragments, sand, and small gravel. Dry.
.5 - 5	4-3-4	FILL - same as above with slag and cinder material.
- 7.5	1-2-1	FILL - same as above.
.5 - 10	1-1-2	FILL consisting of brown-red silty clay. Mottled. Some medium grain sand and small gravel.
1 - 12.5	2-2-2	FILL consisting of brown silty CLAY.
3.5 - 15	1-1-2	FILL - same as above.
6 - 17.5	1-1-1	FILL consisting of brown silty CLAY. Trace of fine grain sand. Moist
8.5 - 20	1-1-4	FILL - same as above. Trace of small gravel and asphalt.
1 - 22.5	1-2-3	FILL - same as above. Mottled.
		Fill discontinues @ approx. 23'.
3.5 - 25	2-4-7	Light brown fine to medium SAND. Dry.
6 - 27.5	2-4-6	Light brown fine to medium grain SAND. Trace of silt. Dry.
8.5 - 30	2-4-5	Brown fine grain SAND. Wet.
1 - 32.5	6-7-8	Same as above. Trace of coarse grain sand. Wet.
3.5 - 35	7-11-13	Same as above. Trace of coarse grain sand and small gravel. Wet.
		E.O.B. @ 35'

Project Name Dead Creek
Project No. IL 3140 Boring/Well No. Q-1/EE-06 Location Site Q Date Prepared 1-19-87
Prepared by Tim Maley Owner IEPA Top of Inner Casing Elev. 423.51 Drilling Firm Fox drilling Driller Jerry Hammon
Start & Completion Dates 1/19-1/19/87 Depth (ft) Description Type of Rig Mobile 8-61 EE-06 Method of Drilling 3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. 8 in. Boring Depth 35 ft. Casing and Screen Diam. 2 in.
Screen Intervel 28 - 33 ft.
Screen Type stainless steel 0.01 slot
Stickup 2.3 ft.
Well Type monitoring
Well Construction: FILL Filter Pack 33 - 26 ft.
Seal 26 - 24 ft.
Grout 5 ft. to surface Lock No. 2834 TEST DATA Static Water Elev. 395.53 Date 3-26-87 Static Water Elev. 394.42 Date 5-11-87Slug Test Yes X No
Test Date 5-11-87
Hydraulic Conductivity 2.2 x 10 cm/sec GRAY CLAY Other pH = 7.0
Cond. = 4400 umhos Temp. = 56° F
Yellowish, turbid 20-GRAY SILT WATER QUALITY Samples Taken Yes X No. of Samples 1 round 25-Types of Samples groundwater GRAY Date Sampled 3-16-87
Samplers E & E
Samples Analyzed for HSL compounds FINE - MED 30-SAND Split Samples Yes Recipient _ 35 Comments REFURES Slight odor

	Site	Dead	Creek	Site-Q
--	------	------	-------	--------

## Boring/Well No. Q-1/Well #EE-06

Sample Depth	Blow Count	Description
		Black cinder fill on surface
1 - 2.5	9-20-22	FILL consisting of black-gray silty clay with asphalt, cinders, sand, and gravel. Dry.
3.5 - 5	8-15-12	FILL - same as above.
6 - 7.5	5-9-3	FILL - same as above. Some wood chips.
8.5 - 10	3-6-2	FILL - same as above. With increased amount of debris including traces of rope, paper products, wood chips, and black stained sand.
11 - 12.5	1-3-13	FILL - same as above.
13.5 - 15	4-3-2	FILL - same as above. Fill discontinues @ approx. 14' then dark gray silty CLAY. Moist.
16 - 17.5	3-5-7	Gray silty CLAY. Moist.
18/5 - 20	2-4-4	Gray sandy SILT. Trace of very fine grain sand. Dry.
21 - 22.5	5-5-9	Same as above.
23.5 - 25	1-2-2	Dark gray very fine grain SAND. Some silt. Wet.
26 - 27.5	3-7-11	Light gray fine grain SAND. Trace of silt.
28.5 - 30	5-6-6	Gray SILT. Trace of very fine sand. Wet
31 - 32.5	3-8-11	Same as above. More fine grain sand. Wet.
33.5 - 35	1-3-6	Same as above.
		E.O.B. @ 35'

 
 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 1-20-87
 Boring/Well No. Q-2/EE-07 Location __Site Q Owner IEPA
Top of Inner Casing Elev. Prepared by Tim Maley Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 1/20-1/20/87 Depth (ft) Description Type of Rig Mobile B-61 EE-07 Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary WELL DATA Hole Diam. 8 in. Boring Depth 38 ft. Hole Diam. FILL Casing and Screen Diam. 2 in. Screen Interval 32.5 - 37.5 ft. Screen Type stainless steel 0.01" slot
Stickup 1.66 ft.
Well Type Benitoring Well Construction: Filter Pack 37.5 - 29 ft. Natural
Seal 29 - 27 ft.
Grout 6 ft. to surface
Lock No. 2834 10 TEST DATA Slug Test Yes X No
Test Date 5-12-87
Hydraulic Conductivity0.95 x 10 cs/sec Other GRAY CLAY 20. MATER QUALITY GRAY SILT Samples Taken 1 round No. of Samples **▼** 25 Types of Samples groundwater Date Sampled 3-16-87
Samplers E & E Samples Analyzed for HSL compounds 30-GRAY FINE - MED SAND Split Samples Yes___ No X Recipient 35 Comments 38 REMARKS

Site	Dead	Cree	k Site	-Q

Boring/Well No. Q-2/Well #EE-07

Sample Depth	Blow Count	Description
		Black sandy CLAY with gravel and cinders. Fill on surface.
3.5 - 5	AN	FILL - spoon refusal (possible rubber tire)
8.5 - 10	AN	No recovery.
13.5 - 15	33-10-8	FILL - poor recovery. Appears to be various debris including paper products. Fill discontinues @ approx. 17'.
18.5 - 20	5-8-13	Gray silty CLAY. Trace of very fine grain sand. Dry.
23.5 - 25	3-4-3	Gray silt. Trace of very fine grain sand. Moist.
28.5 - 30	5-10-13	Gray fine grain SAND. Moist.
33.5 - 35	6-6-13	Gray fine to medium grain SAND. Wet.
36 - 37.5	-	Same as above.
		E.O.B. @ 38'

 
 Project Name
 Dead Creek

 Project No.
 IL 3140

 Date Prepared
 1-21-87

 Prepared by
 Tim Maley
 Boring/Well No. Q-3/EE-08 Location Site Q Owner IEPA Top of Inner Casing Elev. 421.14 Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 1/21-1/21/87 Description Type of Rig Mobile B-61 EE-08 Method of Drilling 3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. Hole Diam. 8 in.
Boring Depth 40 ft.
Casing and Screen Diam. 2 in. Screen Interval 33 - 38 ft.
Screen Type stainless steel 0.01" slot Stickup 1.56 ft.
Well Type monitoring
Well Construction: FILL Filter Pack 38 - 30 ft.

Seal 30 - 28 ft.

Grout 28-26 ft and 8 ft to surface 10 Lock No. 2834 TEST DATA Static Water Elev.  $\frac{395.78}{392.92}$  Date  $\frac{3-26-87}{5-11-87}$ 15 Static --Slug Test --Pate 5-13-87 Yes X Hydraulic Conductivity1.06 x 102cm/sec Other 20 WATER QUALITY GRAY CLAY Yes X Samples Taken No. of Samples 1 round 25 Types of Samples groundwater Date Sampled 3-16-87
Samplers E & E Samples Analyzed for HSL compounds Split Samples Yes No_ GRAY Recipient 35-FINE - MED SAND Comments 40 🗇 REMARKS

Site	Dead	Creek	Site-Q

Boring/Well No. Q-3/Well #EE-08

Sample Depth Blow Count		Description		
		Brown-black-gray silty clay FILL on surface.		
3.5 - 5	1-1-2	FILL consisting of black SILT. Trace of fine grain sand and black cinders. Thinnly laminated and crumbly.		
8.5 - 10	1-0-1	Same as above. Moist at 9'.		
13.5 - 15	1-0-0	Same as above. Wet. Fill apparently discontinues @ approx. 17'.		
18.5 - 20	2-3-4	Dark gray silty CLAY. Dry.		
23.5 - 25	2-3-7	Same as above. Some mottleness. Moist at 25'.		
28.5 - 30	2-2-4	Same as above.		
33.5 - 35	3-6-13	Gray fine to medium grain SAND. Wet.		
38.5 - 40	8-20-30	Same as above.		
		E.O.B. @ 40'		

Project Name Dead Creek
Project No. 1L 3140 Boring/Well No. Q-4/EE-09 Location Site Q
Owner IEPA Date Prepared 1-21-87
Prepared by Tim Maley Top of Inner Casing Elev. 415.40 Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 1/21-1/21/87 Depth (ft) Description Type of Rig Mobile 8-61 EE - 09 Method of Drilling 3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. 8 in.
Boring Depth 33 ft.
Casing and Screen Diam. 2 in. Screen Interval 28 - 33 ft.
Screen Type stainless steel 0.01" slot Stickup 2.02 ft.
Well Type monitoring
Well Construction: FILL Filter Pack 33 - 19 ft. Natural Seal 19 - 17 ft.
Grout 17 ft. to surface Lock No. 2834 TEST DATA Static Water Elev.  $\frac{395.24}{395.83}$  Date  $\frac{3-26-87}{5-11-87}$  Static Water Elev.  $\frac{395.83}{395.83}$  Date  $\frac{5-11-87}{No}$  Test Date  $\frac{5-13-87}{No}$ Hydraulic Conductivity6.90 x 10 €m/sec Other pH = 5.8 -Cond. = 1700 umhos Temp. = 62° F 20-WATER QUALITY GRAY FINE - MED Samples Taken Yes X No. of Samples 1 round
Types of Samples groundwater SAND 25 Date Sampled 3-16-87 Samplers E & E
Samples Analyzed for HSL compounds 30 Split Samples 33 Yes Recipient _ Comments REMARKS

_

Site Dead Creek Site-Q

Boring/Well Ho. Q-4/Well #EE-09

Sample Depth Blow Count		Description		
		Brown-black silty CLAY FILL on surface. Trace of paper products and sand.		
3.5 - 5	6-7-1	No recovery - FILL		
8.5 - 10	7-17-12	FILL consisting of brown-black SILTY CLAY with some slag gravel, brick fragments, and broken glass.		
13.5 - 15	1-0-1	FILL — same as above. Mostly black cinders, slag gravel, sand, and silt. Fill discontinues $\theta$ approx. $16^{\circ}$ .		
18.5 - 20	9-14-17	Gray to dark gray fine to medium grain SAND. Moist.		
23.5 - 25	1-2-5	Same as above. Wet.		
28.5 - 30	2-3-12	Same as above.		
		E.O.B. @ 33'.		

Project Name Dead Creek
Project No. IL 3140
Date Prepared 1-22-87
Prepared by Tim Maley Boring/Well No. Q-5/EE-10 Location Site Q Owner IEPA Top of Inner Casing Elev. 419.40 Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 1/22-1/22/87 Depth (ft) Description Type of Rig Mobile 8-61 EE-10 Method of Drilling _ 3 3/4" I.D. hollow stem augers WELL DATA Hole Diam. 8 in.

Boring Depth 35 ft.

Casing and Screen Diam. 2 in.

Screen Interval 27.5 - 32.5 ft. Screen Type stainless steel 0.01" slot
Stickup 2.3 ft.
Well Type monitoring
Well Construction: Filter Pack 32.5 - 25 ft.

Seal 25 - 23 ft.

Grout 6 ft. to surface FILL 10 Lock No. 2834 TEST DATA Static Water Elev.  $\frac{395.37}{395.44}$  Date  $\frac{3-26-87}{5-11-87}$ Slug Test Test Date Hydraulic Conductivity pH = 6.8 Other cond. = 3800 umbos Temp. = 60° F 20 turbid WATER QUALITY Samples Taken No. of Samples 1 round
Types of Samples groundwater 25 GRAY FINE - MED Date Sampled 3-Samplers E & E 3-16-87 SAND Samples Analyzed for HSL compounds 30-Split Samples Yes_ Recipient 35 Comments Strong hydrocarbon odor REMARKS

5	ite	Dead	Creek	Site-Q
---	-----	------	-------	--------

Boring/Well No. Q-5/Well #EE-10

Sample Depth Blow Count		Description		
		FILL materials on surface.		
3.5 - 5	3-37-7	FILL consisting of black clayey sand with some black cinders, fly ash, wood chips, and fine to coarse grain sand. Dry.		
8.5 - 10	2-4-2	Same as above.		
13.5 - 15	AM	No recovery. Possible rubber tire.		
18.5 - 20	NA	No recovery - fill apparently discontinues @ 22'.		
23.5 - 25	AN	No recovery.		
28.5 - 30	4-4-4	Gray fine to medium grain SAND. Wet.		
33.5 - 35	22-20-22	Same as above.		
		E.O.B. @ 35'		

Project Name Dead Cr Project No. IL 3140 Dead Creek Boring/Well No. Q-6/EE-17 Location Site Q Owner IEPA Date Prepared 2-6-87
Prepared by Tim Maley Top of Inner Casing Elev. 423.06 Drilling Firm Fox drilling
Driller Jerry Hammon
Start & Completion Dates 2/6/87,2/6/87 Depth (ft) Description Type of Rig Mobile B-61 EE-17 Method of Drilling 3 3/4" I.D. hollow stem augers and rotary WELL DATA Hole Diam. 8 in. Boring Depth 43 ft. Casing and Screen Diam. Screen Interval 38 - 43 ft.
Screen Type stainless steel 0.01" slot Stickup 1.06 ft.
Well Type monitoring
Well Construction: FILL Filter Pack 43 - 34.5 ft.
Seal 34.5 - 32.5 ft.
Grout 32.5 ft. to surface Lock No. 2834 TEST DATA Static Water Elev.  $\frac{394.97}{396.26}$  Date  $\frac{3-26-87}{5-11-87}$ BROWN SILT Slug Test Yes No X Test Date Hydraulic Conductivity pH = 7.0 Other Cond. = 1500 unhos Temp. = 56° F 20 BROWN WATER QUALITY FINE SAND Samples Taken No. of Samples 1 round
Types of Samples groundwater 25 Date Sampled 3-16-87
Samplers E 6 E
Samples Analysed for HSL compounds 30-Split Samples Y ... No_X Recipient BROWN 35-MEDIUM SAND Comments REMARKS 40-Background location

# Site Dead Creek Site-Q

#### Boring/Well No. Q-6/Well #EE-17

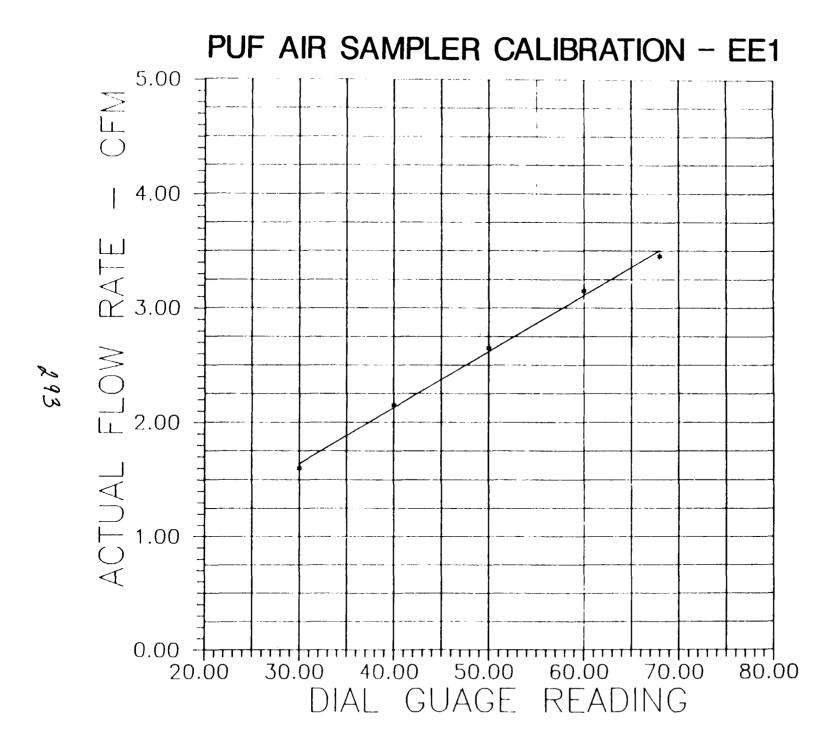
Sample Depth	Blow Count	Description
		Well vegetated fill on surface.
1 - 2.5	5-6-6	FILL consists of brown silty CLAY. Trace of fine grain sand.
3.5 - 5	3-3-5	FILL consisting of dark brown silty CLAY and brown fine grain sand. Layered. Dry.
6 - 7.5	12-20-22	FILL consisting of brown very fine grain SAND. Some silt. Dry.
8.5 - 10	13-20-40	FILL consisting of brown silty clay and fine grain sand. Trace of coarse grain sand and brick fragments.
11 - 12.5	6-9-5	FILL consisting of brown medium to coarse grain SAND. Trace of small to large gravel and crushed limestone. Dry. Fill discontinues # 14'.
13.5 - 15	4-4-5	Brown SILT. Trace of very fine grain sand. Dry.
18.5 - 20	4-4-7	Light brown fine grain SAND. Dry.
23.5 - 25	9-18-20	Same as above.
28.5 - 30	10-15-19	Light brown medium grain SAND. Trace of coarse grain sand and small gravel. Wet 8 30'.
33.5 - 35	11-14-20	Same as above.
38.5 - 40	12-14-16	Same as above.
		B.O.B. @ 43'.

Project Name D Project No. IL Date Prepared	3140		Boring/Well No. Q-7/EE-18 Location Site Q Owner IEPA
Prepared by Ti		<del></del>	Top of Inner Casing Elev. 419.54
			Drilling Firm Fox drilling
Depth (ft)	Descri	ption	Driller Jerry Hammon
			Start & Completion Dates 2/9/87,2/9/87
			Type of Rig Mobile B-61
	EE 18		Method of Drilling 3 3/4" I.D. hollow stem augers, Rotary
O MAAAA		•	WELL DATA
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	⊞₩₩		Hole Diam. 8 in.
	<b>HI HIWW</b>	4	Boring Depth 43.5 ft.
<del>-1</del>	## ##WW	¥	Casing and Screen Diam. 2 in.
- <del></del>	## ## <b>W</b> M	1	Screen Interval 38 - 43 ft.
5- <del> </del>		1	Screen Type stainless steel 0.01" slot
<b>-K</b> XXXX		4	Stickup 1.34 ft. Well Type monitoring
-{XXXXX	#####	FILL	Well Construction:
-#XXXX	## ## WW	4	Filter Pack 43 - 27 ft. Natural
<b>-₩</b> ₩	田田田	4	Seal 27 - 25 ft.
10- <b>/</b> WW	## # <b>!</b> !!!		Grout 25 ft. to surface
- <b>M</b> MM		ĺ	Lock No. 2834
±XXXX			TEST DATA
_#(XXXXX)	<b>              </b>		Static Water Elev. 395.10 Date 3-26-87
15-WW	# ##	1	Static Water Elev. 396.26 Date 5-11-87
'3 <b>J</b>		1	Slug Test Yes No X
		3.	Test Date
1		Ĭ	Hydraulic Conductivity
4			Other <u>High oil content</u> , strong odor
20-			
	# #	BROWN AND	<del></del>
<b>-</b>		GRAY SILT	WATER QUALITY
<del></del> -	# #		A. 1. A. 1
-			Samples Taken Yes X No
25-			Types of Samples groundwater
CONTRACT.	Q-CV-Street	*	
-	DAMA MORES		
-			Date Sampled
*******			Samplers E & E
30-			Samples Analysed for HSL compounds
-			<del></del>
		BROWN AND	
		GRAY FINE - MED	Split Samples Yes No_X_
- (3)		SAND	Recipient
35—		İ	Comments
		4	
1		1	
]	<b>=</b>		
40-		1	TENATES
J.			<del></del>
$\mathbf{I}$	<b>₩</b> =₩₩	1	
		1	
43.5	Street Street	j	
- <del>- • •</del>			

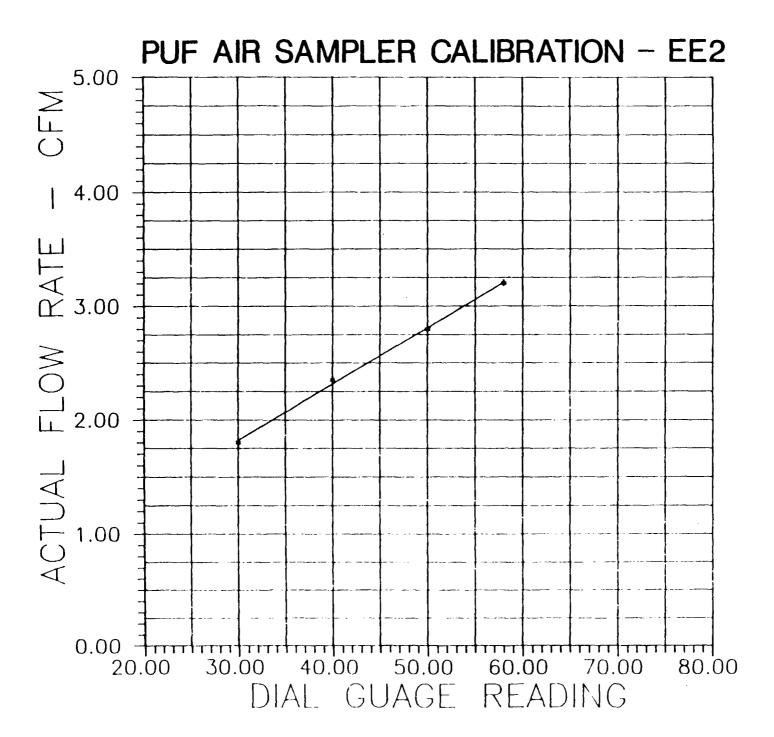
		· • ·	
31 T O	Dead	CIOOK	Site-O

#### Boring/Well No. Q-7/Well #EE-18

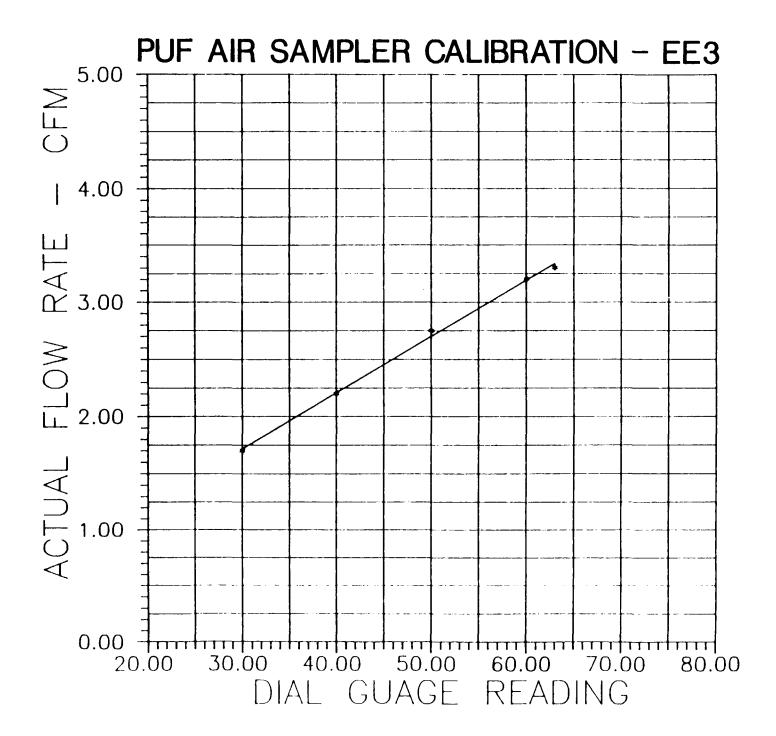
Sample Depth	Blow Count	Description		
		Black cinder fill on surface.		
		Straight drill to 20'.		
		Stratigraphy sequence based on auger cuttings.		
		0-18' FILL consisting of black clayey SAND with some black cinders, slaw material, plastic and paper products, and wood chips.		
18.5 - 20	10-17-24	Dark brown - dark gray SILT. Trace of very fine grain sand. Moist. Rust color and oil-like staining. Laminated.		
23.5 - 25	4-4-5	Same as above.		
28.5 - 30	3-5-8	Brown fine to medium grain SAND. Wet.		
33.5 - 35	4-6-10	Same as above.		
38.5 - 40	3-5-10	Becomes gray. Same as above. Trace of coarse grain sand.		
		Е.О.В. @ 43.5′.		


<del></del>		
Project Name Dead Creek		Boring/Well No. Q-8/EE-19
Project No. IL 3140	<del></del>	Location Site Q
Date Prepared 2-10-87		Owner IEPA
Prepared by Tim Maley		Top of Inner Casing Elev. 423.22
•	<del></del>	Drilling Firm Fox drilling
Depth (ft) Descrip	ption	Driller Jerry Hammon
	•	Start & Completion Dates 2/10,2/10/87
		Type of Rig Mobile 8-61
EE-19		
		Method of Drilling 3 3/4" I.D.
		hollow stem augers, Rotary
<b>[</b> ]		
		WELL DATA
		Unio Adam A da
7XXXXIII <del>                                   </del>		Hole Diam. 8 in. Boring Depth 43 ft.
1,444 <del>111</del> 1 111144444		Casing and Screen Diam. 2 in.
-1WWHH HH1	i	Screen Interval 37.5 - 42.5 ft.
		Screen Type stainless steel 0.01" slot
5- <b>-</b>		Stickup 2.1 ft.
- <b>₩</b> ₩₩## ## <b>₩</b> ₩₩	FILL	Well Type monitoring
- <b>YYYYYHH HH</b> XXXXX	, , , , ,	Well Construction:
-KYYYYIII		Filter Pack 42.5 - 29 ft. Natural
		Seal 29 - 27.5 ft.
10-		Grout 27.5 ft. to surface
		Lock No. 2834
		TEST DATA
		1931 MIN
		Static Water Elev. 399.27 Date 3-26-87
. WWH HHWW		Static Water Elev. 403.24 Date 5-11-87
15-WWW ## ##WWW		Slug Test Yes No X
		Test Date
		Hydraulic Conductivity
		Other Duplicate of DC-GW-07
20-1717		<del></del>
		WATER QUALITY
	SROWN AND	writer America
	BROWN AND	Samples Taken Yes X No
	GRAY SILT	No. of Samples 1 round
25—		Types of Samples groundwater
25-		
		Date Sampled 3-16-67
		Samplers E & E
30-		Samples Analyzed for HSL compounds
		Split Samples Yes No_X
7 4 1 1 2 2 1	GRAY	Recipient
. 1		•
35-	FINE	Comments
	SAND	
40-1		REFARES
43 1 1 1 1 1 1 1 1 1 1		
	•	

Site Dead Creek Site-Q		Boring/Well No. Q-8/Well #EE-19	
Sample Depth	Blow Count	Description	
		Spent coal coke in piles on surface.	
		Straight drill to 30'.	
<u>o</u>		Stratigraphy sequence based on auger cuttings.  O-20 FILL consisting of black cinders, slag gravel, and fine to coarse grain sand. Dry. Fill probably discontinues @ approx. 20'.	
28.5 - 30	8-12-15	Gray very fine grain SAND. Trace of silt.	
33.5 - 35	8-13-18	Same as above. Trace of coarse grain sand.	
38.5 - 40	7-10-14	Same as above.	
	Ì	E.O.B. @ 43'.	

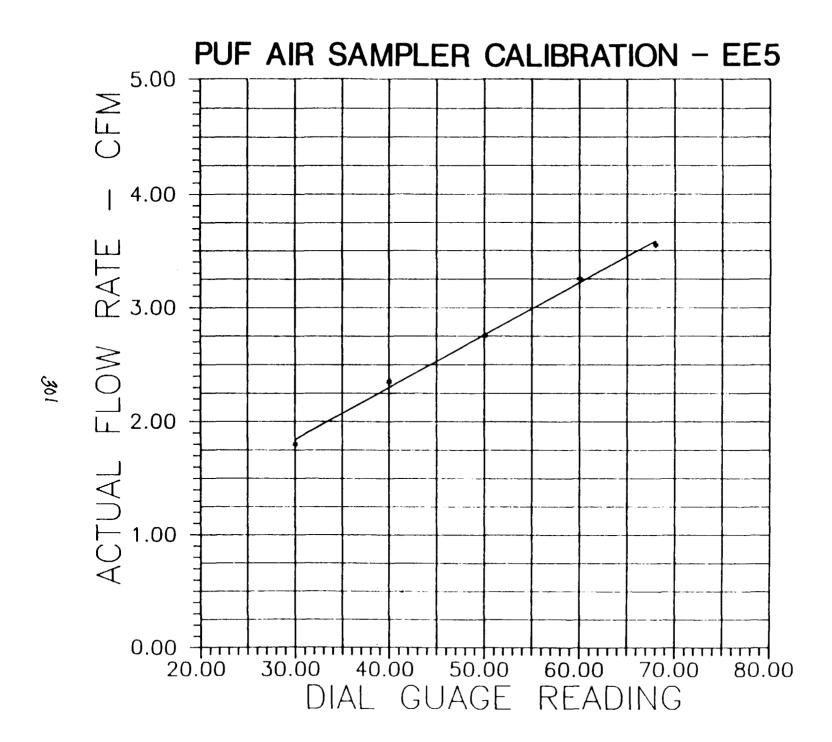

# GMW MODEL PS-1 CALIBRATION FORM

mina 210° 9 mpri

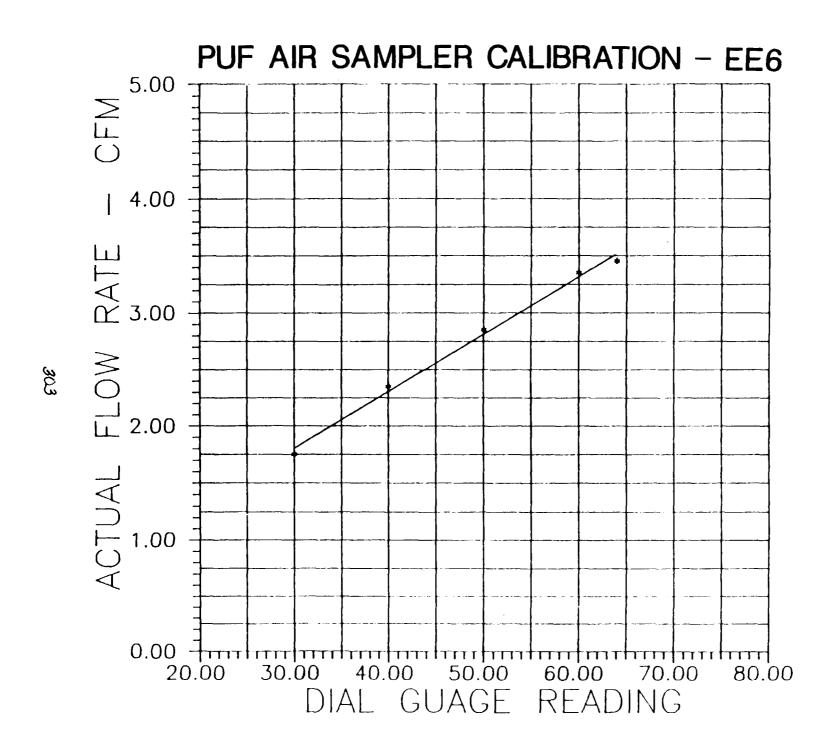

Name:	LWALL .	Date: 7/20/6	7
Site Address:_	AFAL CREEK	CIFE O/R	·
PS-1 Shelter No	).:	Station Pressure	:30.31=
GMW Model 40° OC	CU No.: 45-C	<del>-</del>	
Magnehelic	Manometer	OCU Flow-	
Gauge Reading	Reading (in. H ₂ O)		Temp. (OC) -
- 13 68	35/1.7 35/3.	+	89°/
60	32/3./		
_50_	27/2.6		
40	2.2/2.1	•	
30	1.6/16		
	· .	•	<del></del>
	·	<del></del>	
	·		
Comments:			
	·		



Name:	SEWALL .	Date: 7/20/	27
Site Address:	MAN CREEK -	5/16 Q/R	
PS-1 Shelter No	.:	Station Pressure:	30.2/
GMW Model 40°OC	U No.: 45-C	<del></del>	
Magnehelic Gauge-Reading	Manometer Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. (°C) =
			89°F
58 <del>≤0</del>	3.2/3.2		
<u>50</u>	28/2.8		
	2.4/2.3		
30	1.8/13		<u> </u>
	•	-	<del></del>
			<del></del>
Comments:	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
			<del>.</del>
4.4			

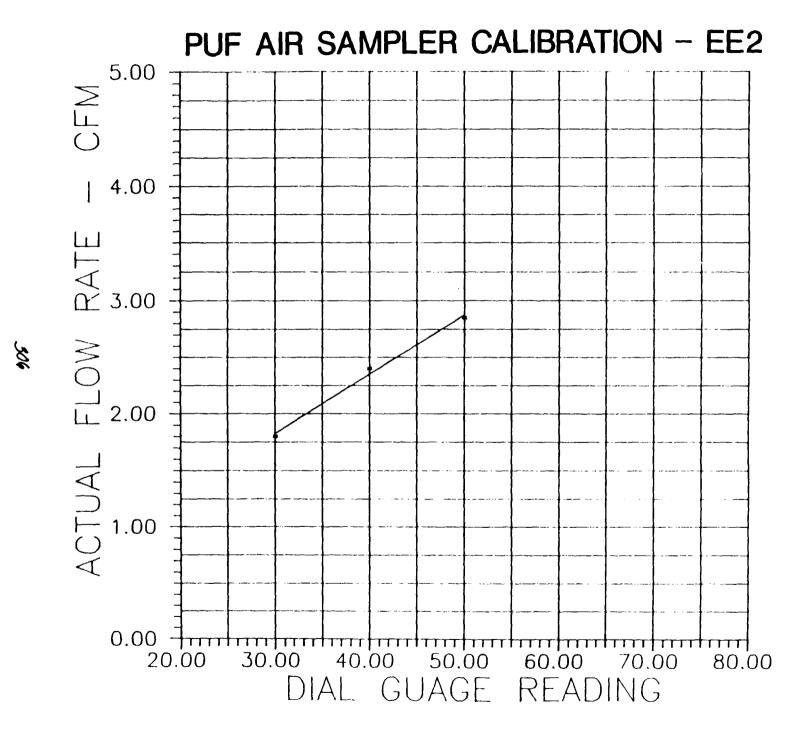



Name:	A. SEWALL .	Date: 7/30/	87
Site Addres	S: <u>NEAR</u> CREEK	- SITE G/R	·····
PS-1 Shelte	r No.: <u>EE-3</u>	Station Pressure:	30.21
GMW Model 4	0 OCU No.: 45-C	<del></del>	
Magnehelic Gauge Readi	Manometer ng Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. (OC) -
<u>/- 2</u>	33/33		<u>89°</u> /
60	32/32		
50	· <u>~.e/2.7</u>		
40	22/2:2	*	
30	1.7/1.7		<del></del>
		·	
		<del></del> .	<del></del>
Comments:			
	·		
<del></del>			

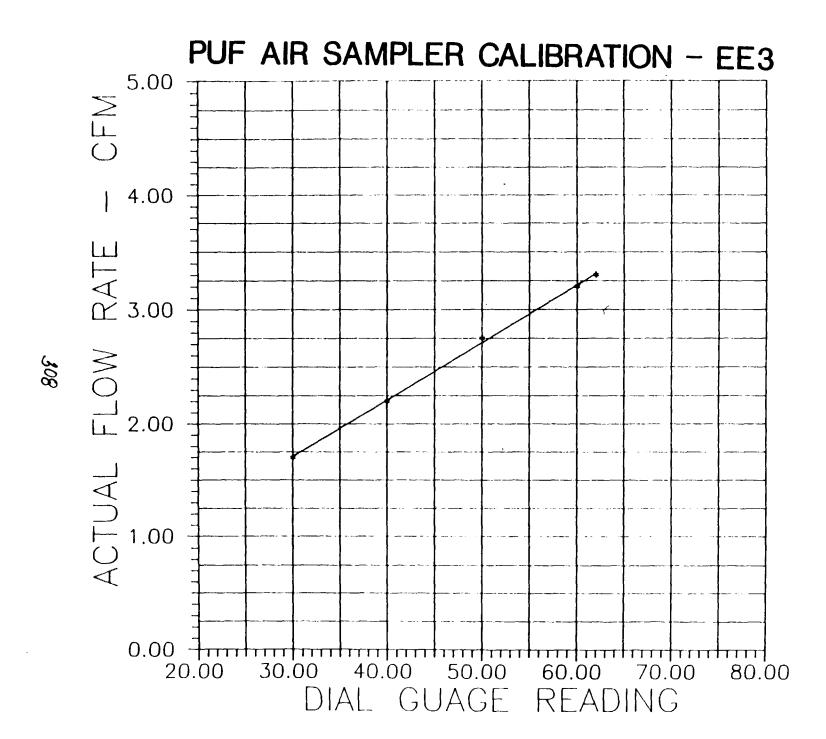



Name: 4.	Studic .	Date: 7/.30	197
Site Address:	MEAD CREEK	- SITE Q/R	
PS-1 Shelter No.	:	Station Pressure	30.3/
GMW Model 40°OCU	No.: 45-C		
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O	OCU Flow- Rate (tcfm)	Temp. (OC) -
53 <del>€⊙</del> -	33/3/		89°A
	29/2.7		
<u> 40</u>	21/2.3		
30	1.9/13		
		·	
Comments:	<u> </u>	<del></del>	
<del></del>		· · · · · · · · · · · · · · · · · · ·	<del></del>

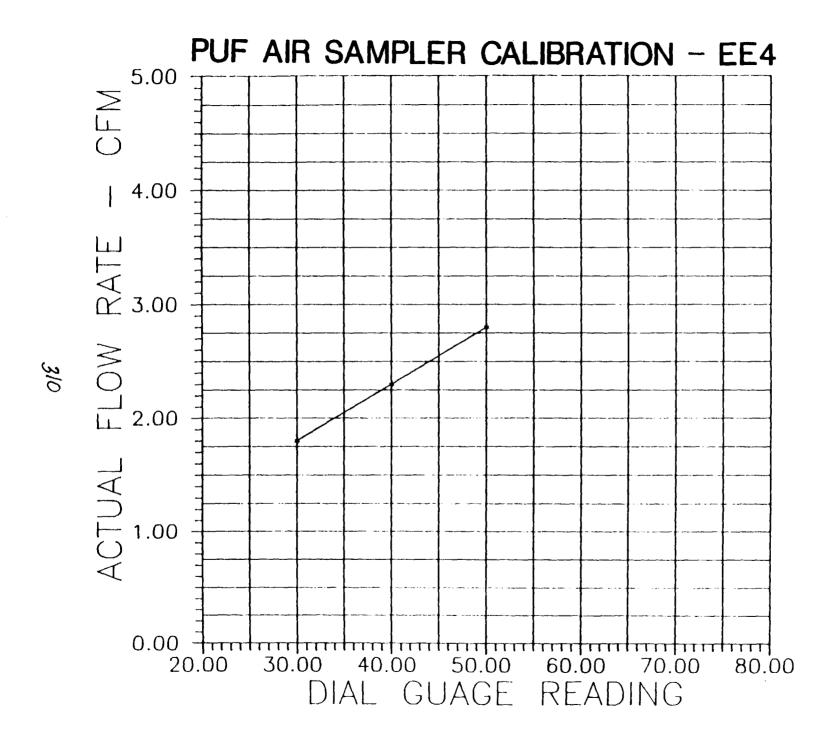
Name:	S. SEWALL.	Date: 7/20/8	7
Site Addres	s: ARPA CREEK	- SITE O/R	
PS-1 Shelte	r No.: <u> </u>	Station Pressure:	30.21
GMW Model 4	0° OCU No.: 45-C		
	•		
Magnehelic Gauge Readi	Manometer ng Reading (in. H ₂ 0	OCU Flow- Rate (tcfm)	Temp. (°C)
63	36/35	<del></del>	<u> </u>
_60_	3.3/3.2		
<u> </u>	<u> 28/27</u>		
~>	2.4/2.3	·	
35	1.8/1.8	<del></del>	
		•	
<del></del>	<del></del>	·	
Comments:	· · · · · · · · · · · · · · · · · · ·		<u></u>
	·		



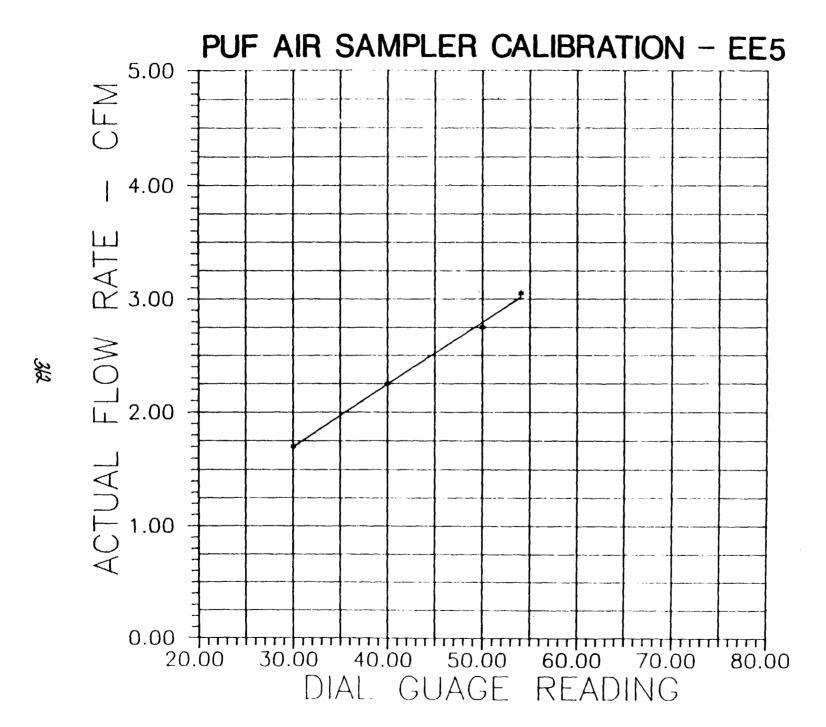

Name:	SEWALL .	Date:	120/27
Site Address:	MAD CREEK	- 2175 0/R	
PS-1 Shelter No	·:	Station Pres	sure: <u>30.2/</u>
GMW Model 40°OC	U No.: 45-C		
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O)	OCU Flow Rate (tcf	_
-64	35/34	<del></del>	29°F
<u> </u>	3.7/33		
	2.9/2.2		_
<u></u>	24/2:3		<del>-</del> · · · · · · · · · · · · · · · · · · ·
38	1.8/1.7	<del> </del>	<u> </u>
	<del></del>	·	<del></del>
Comments:			<u></u>
			•



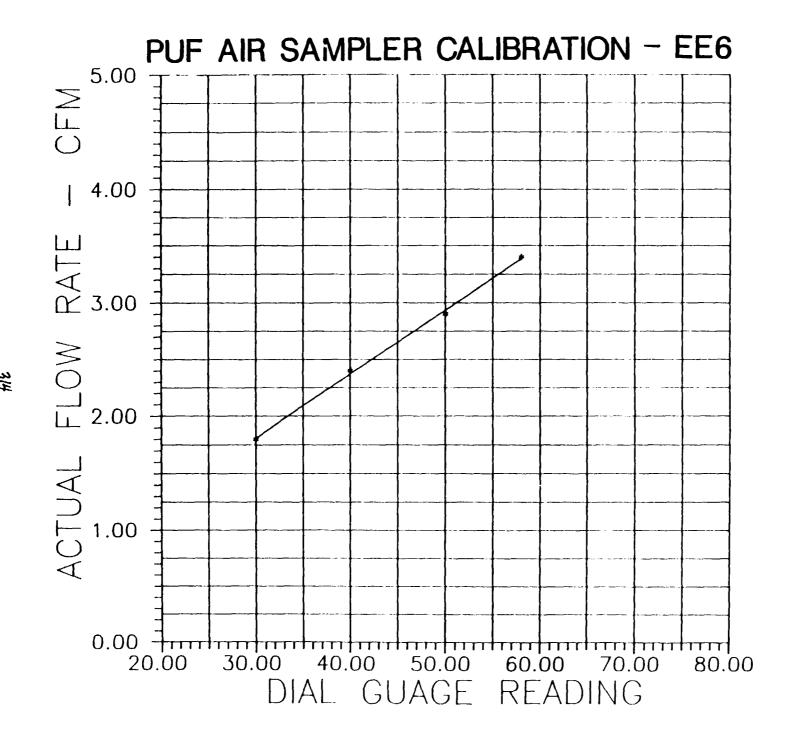

Name:	SEWALL	Da	te: 7/2;	2/87
Site Addres	s: <u>A4A</u> A (	CRAAK - SIF	45 Q/R	
PS-1 Shelte	r No.: <u>FA.</u>	St	ation Pressu	re:
GMW Model 4	0 OCU No.:	45-c		
Magnehelic Gauge Readi		meter (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. ( ^O C) -
*				***************************************
<del></del>		<del></del>	<del></del>	
<del></del>				
		<del></del>		
	<del></del>	<del></del> .		
<del></del>		<del></del>	•	
		<del></del>		
Comments.	×		1	Au/= 10
				101= PO
	MotoR FA		<del></del>	· · · · · · · · · · · · · · · · · · ·
				·


Name: 🔝 🔬 S.	EWALL.	Date: 7/2:	<u> </u>
Site Address:	NEAD CREAK. SI	TES O/R	
PS-1 Shelter No.	:	Station Pressure	: <u>30.10</u>
GMW Model 40°OC	J No.: <u>45-c</u>	<b>-</b>	
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. (OC)
_50	2.9/2.8		86.
40	2.4/2.4		
30	1.8/1.8		
			<del></del>
-	***		
Comments:	IGE READING SO AT	START OF TEST	w1774
	VE OPEN	<u> </u>	<del></del>
			<del></del>
	•		




Name: A. SEW	766	Date: 7/22	187
Site Address:	ARM CRISEK	SITES O/R	<del> </del>
PS-1 Shelter No	·: <u> </u>	Station Pressure:	30 10
GMW Model 40° OC	U No.: 45-C		
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. ( ^O C) -
<u> 62</u>	3.2/3.3		36
60	32/3.2		
50	28/27		
40	2.3/2:2	•	
<u> 3c</u>	1.7/17	<del></del>	
		•	
Comments:			
			•




Name: Date:			<u>87</u>
Site Address:	SEAS CRAEK	- SITES O/R	
PS-1 Shelter	No.: <u>EE-4</u>	Station Pressure:	30.10
GMW Model 40°	OCU No.: 45-C	<del></del>	
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. (°C)
<u> </u>	3.8/2.8		<u>56°</u>
40	2.3/2.3		
	1.8/1.8		
	<del></del>		
	<del></del>		
Comments:	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
<del></del>	· · · · · · · · · · · · · · · · · · ·		



Name:	· SEWALL .	Date: 7/22/	/37
Site Address:	DEAD CREEK	- SITES O/R	
	.:_ <u>EE-5</u>		
GMW Model 40° OC	U No.: 45-C	<del></del>	
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. (OC)
_54	30/31		36
50	2.8/2.7	<del></del>	
40	23/22		
30	1.7/1.7	-	
		<del></del>	
		·	
	<del></del>	•	
Comments:	<u> </u>	<u> </u>	



Name: <u>0.55 wall</u> Date: 7/22/87			
Site Address:_	AFAA CREE	c - sites of	<u> </u>
PS-1 Shelter No	0.: <u>EE-6</u>	Station Pressure	2: 30 /O
GMW Model 40° OC	CU No.: 45-C		
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. ( ^O C) -
58	3.4/3/		86°
56	29/29	<del></del>	
<u> 40 </u>	2.4/2.4	<del></del>	
3c	1.8/1.8		
			·
Comments:			
		·	



High Volume Sampler
Air Volume Calculations

Take for the calledon pis to! (1) calcally by at standard Exposition and pursue

Summery Data

(1-) -onih	10: Inac	Dc- 25	DC-2-6-1	00-24	-DC-23-/	Dc=27 V/R	) <del>\</del> -\&-\\	<u> </u>		1)0-16 1	()0-15 /	Dx-200/R		Dc-11 //	Oc-121	DC-13 //	Dc- 9 //	De-8 11	50-100	0,-07	Dr-06 //	De-05 1	Dc - 0 41 //	00-03 4	Oc-02 //	DC-01 C	AX	शंत	
(1) - orifice Transpo standard cal.	Inacount Osti	Et-6		-BE-4		m L	FE-6	EE-7	EE-4	- EE-3	ת	Ei Fri	1	CE-6	1. L. J.	F-1-4	EF-3	C1-2	E #-1	Olong	(3 E − 6	12 EL- 7	アニュョ	EE-3	E = -2	TP CT		shet no.	
1 col. 8+1 = 316		1		,		7-22-87						7-21-87		*	,	ħ;	•	`	7-17-57		*	1	-	•	•	7-16-87		D.t	
0.28		735	- 722./	621.9	742.2	- FD	7/1.4	9/0.6	-56.5.	721.9	277.5	714.4		9.955	733.5	740.7	740.2	7/9.3	621.5		652.	9.379	759.9	718.6	709.4	733.6		Suple time	<b>(</b>
JoHo P Tity + 0.0 156		3896	-3927	2899	3246	1	-4/35	H 0	979	-3668	2040	4055		2819	367/	4019	353/	3794	3160		335/	3582	4017	3695	3598	3968	stand To-Pipaus.	TITLE A.	
<u> </u>		111.05	111.88	2	117.81	5	117.81	1	84.30	104.50		115.53		82.59	104.59	114.50	100.60	10809	90.03	•	74.36	102.05	114.44	105.27	10251	113.05		A.	

جاجم	Sampling L papers		fuf Cm.	Vertex		Clock Time			Sampler Times				/Magazika		Temper	nore it	Preserve	metrick mm Hg	Commons
5/4	10.	Films (J)	No.	Serring	Burt. № CDT	\$100. to CD1	Min Elapsod	Stort, mas	Step, mm	Min Elepsed	3,700	1100	14,30	•	31071	3100	Stort	\$100	
16-1	at corner	~			0600	1837	-°5 <b>7</b>	3.618	14338	215	<i>5</i> .3	33	3,3		69	85	30.14	30.10	10-08 00-10
	E OC PENCE				06/0	1811	721		14183				34						AC-08
2:3	we (cicao)				0608	1832	71111		14804				38		62				AC-07
£4	NI CORNER				0557	1897		718.3				37			69				AC-13 (NOUTE
665	Sw BKG				0553			£44.7											AC:12
<u>4-6</u>	ale colonta				Of CS	<u> </u>	710	678.9	12355	556.6	₹C>	36	34	32	67	<u>95</u>	30,14	30,0	AC-11 (CO LOCALA
								ļ					ļ					ļ	ļ
									<b> </b>		ļ		<b></b>		<b> </b>			ļ	<del></del>
									ļ									ļ	
									ļ					<b></b>				ļ	
	i							<u> </u>					<b> </b>					<b>.</b>	
											ļ		<b></b>					ļ	<del></del>
														<b> </b> -	<b> </b>			ļ	
									ļ	····		<del></del>							
					ļ						<u> </u>	L			-			<b> </b>	 
												<del></del>		<u> </u>				<b> </b>	ļ
									ļ	<del></del>								ļ	
	WEATHER	1	10L -			WMA		<del>૪</del> ૦°	R MPH	Kgof,	30	14	N.M.	~Z. #	5	<u>(27</u>	30 )		
				2/00		WAY.	SW (	لنه	8001	, 80°F	3€.	0	100	رره					
				5101	-	WIND	SPEC	(0)	3 mFM	85°F	<u>, 3</u> ¢	·/C_	0500	70	( <	6.40	)(	ļ	
																		<b></b>	
					<u> </u>	ļ												ļ	
		۷0	10r.		RT -	سارمولا	sw (	(90°)	10 CA	, 76 /	30-	10,	(09	202	<u> </u>				
			ļ		NG		SW	1400)	10 00	84%	. 30	14,	(12	407	<b> </b>			<b> </b>	
				570	· -	WI~A	5 (	30,)	13000	' . 88'I	<b>, 3</b> 0	<i>ب</i> رو .	(11.	<u>(0)</u>	Nu	PT	2	ļ	
								ļ <u></u>					<b> </b>	ļ	L				
	ļ										<u> </u>	<b></b>	L	L					

FIGURE 4. TYPICAL SAMPLING DATA FORM FOR HIGH VOLUME PESTICIDE/PCB SAMPLER

		77. 180 THE	
	Parter med by		SKWALL
•		-6-4	

	<del></del>			,	,			·			·								
	tomoting Loadner	No.	Put con.	V=		Clock Time	_	<u> </u>	Sangtur Timer				no/Magnaha	14 in H3O	Tomper	more of	Baro Primour		Commons
	10.	## <del>****</del> (√)	Ma.	Setting	Start, by CDT	9100. to CD1	Min (Indeed	Stert, min	Step, min	Min (layens)	577427	N DO	19,0	•	Bust	B+	819-1	2100	
<b>(-/</b>	y Aprior				0701	1904	722	14358	21502	714.4	56	16	46	44	73	87	30.23	3011	AC -20
2	an Portion	•			0633	1920	167	148 2	2017.7	546.5	46	40	36	34	23	47	تدري	30/1	AC-15
.3	WE CORNER	<u> </u>			9677	1834	727	1486.7	22056	221.9	42	35	33	36					AC-16
4	NW MRIEN	/			0632	1918	766	1521.5	2000	5665	46	36	32	32	23	87	20.23	3017	AC-17 CO-LOCATES
-5	A BEREN				0640	6844	729	1420.2	2330 R	910.6	45	40	70	41	73	87	20.2	30./I	DC-19
6	42 BKB	•			0654	1711	737	12376	1949.0	711.4	44	10	34	34	73	87	30.23	30./7	DC-18
													•				L		
																	L		
_	i															L		<u> </u>	
											l								
$\neg$																			
																1		1	
																		1	
					WEBTH	R- M	UD4	START	41.00	1 300/	220	6.0	Od	737	30	.23	70	720	
					F=12.1.11		MA16	G.Y.Y.	41.00	sw (	2000	٩	GI	81	K 2	. 2/	7	10	
7							1 NA			5w (2									
寸							7.1 <b>Ves</b>		m. No.	392	100.7	- / /h	~ <del>~</del> _,	<del></del>		4 بـ م	144	رمدا	
_							<b></b>				<del>                                     </del>			<del> </del>	<b></b> -		<del>                                     </del>	<del> </del>	<del> </del>
						<b></b>	رين : درير مناح : درير	5.54	RF -	WW A	16	1/=4	5-0		10%	10	h	013	
							202												
						<del> </del>	<del> </del>	MICH	1/2-	W/NA 5	nu.	500	<u> </u>	ZZZ	86	1, 30	136	173	<del>\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</del>
}						<b></b>	<del> </del>	ENA		<u> </u>	LAX	<u> </u>	COSE	YZ	08.	1 30	1.7.	1/25	
						<del> </del>		<b> </b>			<del> </del>			<b></b>				<b> </b>	<del> </del>

FIGURE 4. TYPICAL SAMPLING DATA FORM FOR HIGH VOLUME PESTICIDE/PCB SAMPLER

CENERATORY ON EL-5 BROVE DOWN 5 MIN.

AFTER START UP (FLOW CHANDE), REPLACED

CONTAINED.

Fruit on Lucyon RIMPOFF 4 AT 10,20 AM

'And lance

318

. . .

	Sampling Laussen		PUP Cont.			Clack Time			Bampler Times			udop Tu			7	non o f	Prosecuti	mener mener	Commonts
S/NI	10	***** (J)	Page.	Botting	Sterl, to COT	Stop, Nr CD1	Min Elepson	Stort, mm	Stop, min	Min Flamed	•	1300	12366	•	\$1011	9100	Stort	5100	
6.1	X/berou				0627	)		2/50	2346	154.6*	58		لين	1	74	86	ادعة	30.10	DC - 27 MOTHE BREA
1.2	NIN COR BON	/			0608		786	2019.0	2641	622	38.	35	33	36	24	R/	10.21	30.10	N-22
1 3	NE ORMA	/				<i>1</i> 857	742	22086	2950.8	742.2	54	42	40	40	74	86	30 21	Jr.10	N.03
	an coria	/			0607	1913	786	2089.1	×7//	621.9	32	24	24	28.	74	86	2021	30.10	14.24 so mosts
45	Su rocker				0614	45.76	732	2331.2	30233	722.1	47	.38	37	37	24	84	30.21	\$0.10	10c-26
16	Sw March	<u>,                                    </u>			0621	1841	740	1748.2	X83.2	735	46	35	34	35	24	86	20,21	30.18	10 25
your					· ·														10 € 10 B
							<u> </u>												
							ļ											<u> </u>	
							L		<u> </u>		<u> </u>								
							<u> </u>				<u> </u>	<u> </u>					l		
											l	<u> </u>			<u> </u>	<u> </u>		L	<u> </u>
							<u> </u>					<u> </u>		<u></u>			i		
							<u> </u>						<u> </u>			<u> </u>	<u> </u>		
							<u> </u>												
																		<u> </u>	
												<u> </u>			L	<u> </u>	<u> </u>	L	
												I							
											Ī								
					WEATI	KR 1	iti uc	4 510	RT.	W IN A	36	4000	6.	אייינו	74	۲.	80.2	16	230
									1/6-					9,1	90	<b>/</b> 3	6.17	Lis	10
									a -	سرمح	ا کا	£0^	12	west	86	°F	30.	lò	
																		I	
						cons	JUL SI	1RT -	W ING	400	SE	800	04	2.	30.	72	(0	2/5	
									mila	F - SE	E 11	- wal	ARU	κ					1
									£~4	- 10/1	0 5	LAC	7/3	W. H	.87	<b>7.</b> 3	0.07	17	00

FIGURE 4. TYPICAL SAMPLING DATA FORM FOR HIGH VOLUME PESTICIDE/PCB SAMPLER

0600 WIND NE 8-5

A MOTOR ON FILL WENT BOWN Q N 9:00 A.M. FUR AN UNKNOWN REASON.

ARMETURE TEETH & BRUSHES BROKEN - NOT REPAIRABLE AT THIS TIME

TOTAL SAMPLE TIME AT EE! 1546 MIN.

Steps for The Calculation of Livens whater page 1
between manameter data and flow sate

$$V_{S+d} = V_{in} * \frac{P_{i} - \Delta P}{P_{S+0}} * \frac{(T_{S+0} + 460)}{(T_{i} + 460)}$$

$$\begin{cases} T_{S+0} = 77^{\circ} F \\ T_{i} = 64 \end{cases}$$

$$\begin{cases} P_{S+0} = 29.92 \\ P_{i} = 29.76 \end{cases}$$

$$Q = \frac{353}{(.714)} + \frac{29.76 - 0.2}{29.92} + 1.025 = .5.11cm$$

Ost 
$$\frac{3}{3}$$
 =  $\frac{35.3}{3.356}$  =  $\frac{29.76 - 0.6}{29.72}$  + 1.025 = 10.50 cfm

Ost 
$$4 = \frac{35.3}{2.865} + \frac{29.76 - 0.8}{29.92} + 1.025 = 12.22 cfm$$

Ost 5 = 
$$\frac{35.3}{2.538} + \frac{29.76 - 1}{29.92} + 1.025 = 13.70 cfm$$

$$\frac{3 + \pi \pi = 0}{32 \cdot 0 + 1} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{32 \cdot 0} = \frac{1}{$$

448 = 3.844 = 3.844 424.8 - 90001 + 5.11] - 12HD E46.5 = 3 pool + 2.81 - EHD 78.5 = 3 Poo.1 + 7.2) = 5 HA 824.1 = 3000.1 + 5 - 140

### APPENDIX C

# AIR SAMPLING FLOW VOLUME CALCULATIONS AND CALIBRATION DATA

High Volume Sampler
Calibration Data

# CALIBRATOR ORIFICE for HIGH VOLUME AIR SAMPLER

CERTIFICATE of CALIBRATION

SERIAL NO. 45-C



(7) and (8) are corrected to

(13) 760 mm of Hg (29.92 in, of He

(14) 25°C (77°F)

### **CALIBRATION WORK SHEET**

	١.	(2)	(3)	(4) Meter	(5)	(6) Calibrator	(7)	(8)	For application see ref. 1
Po	un int lo.	Elapsed Time - Δt Min.	Initial Volume V _m M3	Inlet Static Pressure - \( \Delta \P \) in. of Hg	Standard Volume V _{STD} M3	Orifice Static Press. $\Delta H$ in. of H2O	Flow Rate Osro M3/min.	Flow Rate OSTO ft3/min.	$ \sqrt{\Delta H}  \left( \frac{P_1}{P_{STD}} \right)  \left( \frac{536.58}{T_1} \right) $
1		6.994	1	0.1	1-012	2.0	0.145	5.1	
2	<u>}</u>	4.178		0.4	1.005	5.5	0.241	B.5	
3	;	3.356		0.6	0.948	8.5	0.297	10.5	
4		2.865		0.8	0.991	11.5	0.346	12.2	<del></del>
5		2.538		1.0	0.984	14.5	0.388	13.7	
6									
7							<del></del>		<del></del>

(9)	P1:	24.76	in. of Hg
-----	-----	-------	-----------

(10) 
$$T_1 = 64$$
 •F + 459.58 = •R

J		1.
Date of Calibration:	12/10	86

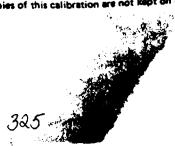
Date placed in	service:
(To be noted by	user)

### **EQUATIONS**

$$V_{STD} = V_{m} \frac{(P_{1} - \Delta P) \quad T_{STD}}{P_{STD} \quad T_{1}}$$
$$= (3) \frac{(9) - (4) \quad (14)}{(13) \quad (10)}$$

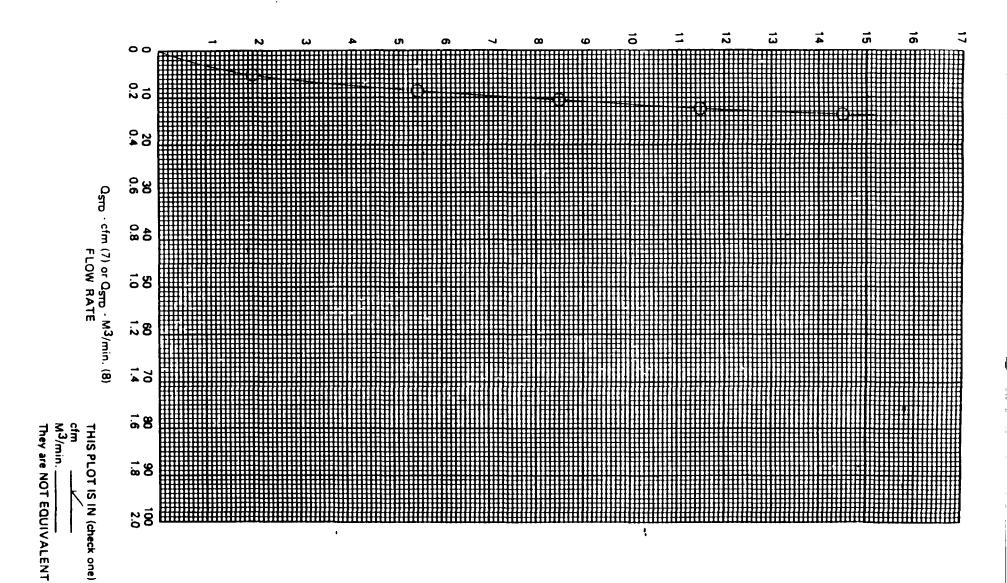
$$Q_{STD} = \frac{V_{STD}}{\Delta t}$$

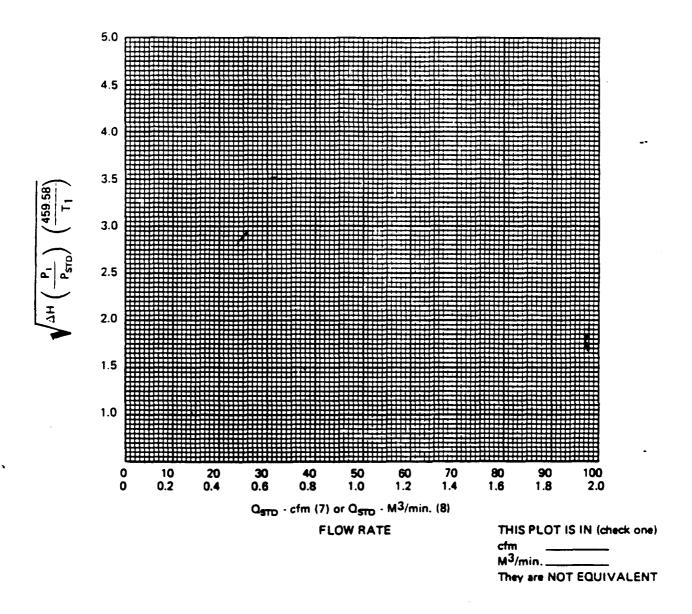
$$= \frac{(5)}{(2)}$$



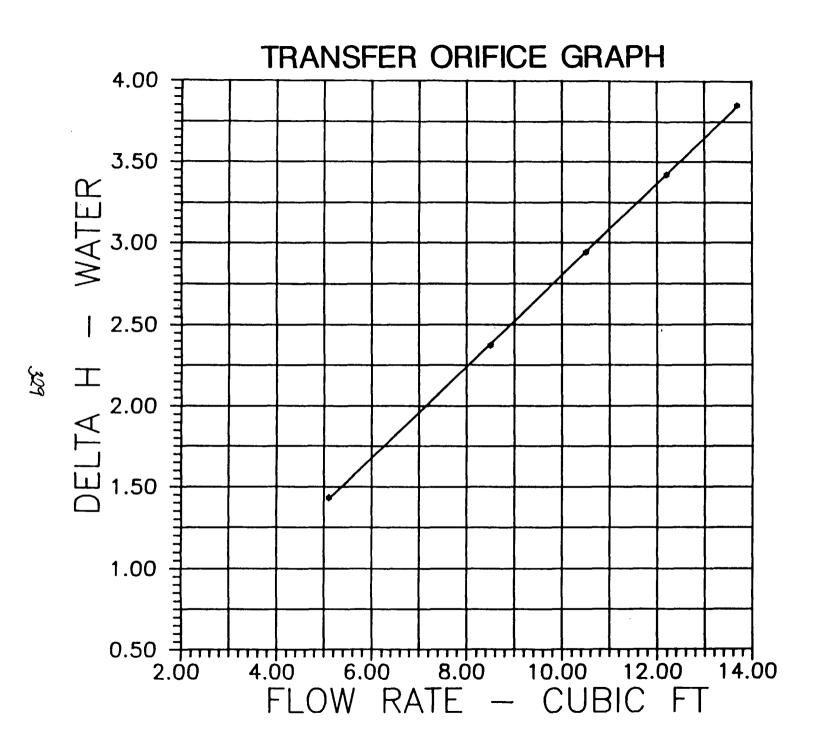



1. The Federal Register, Vol. 47, No. 234, pp. 54898-54921, December 6

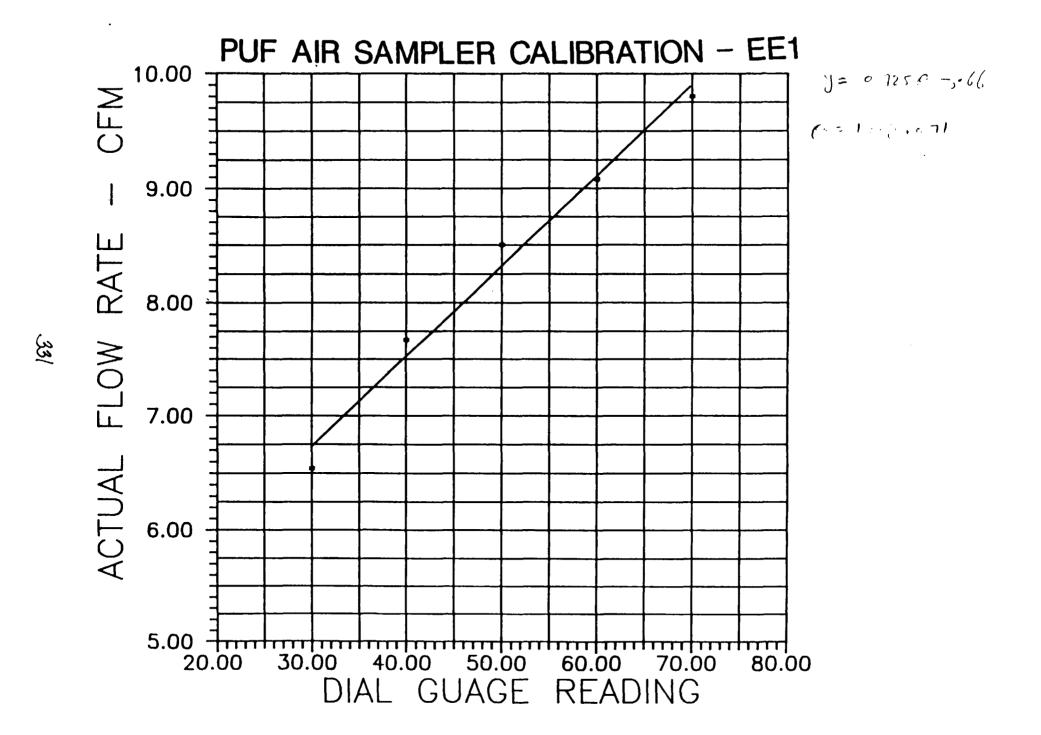

Notes: 1, EPA recommends calibrators should be recalibrated after one year


2. Copies of this calibration are not kept on file.

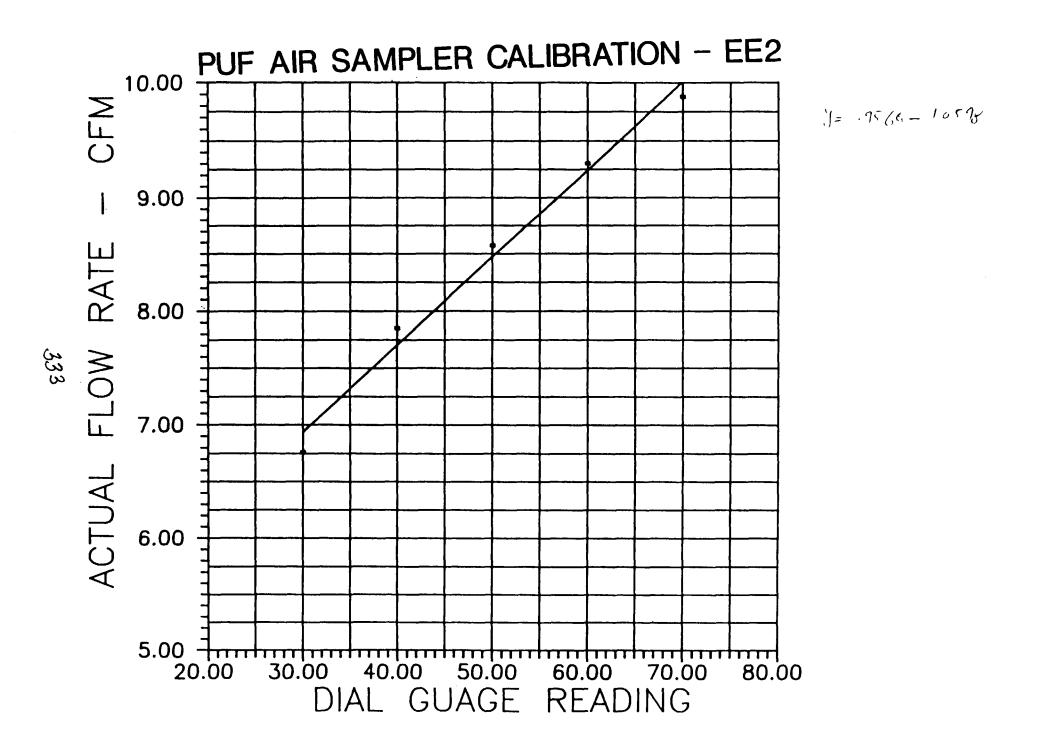




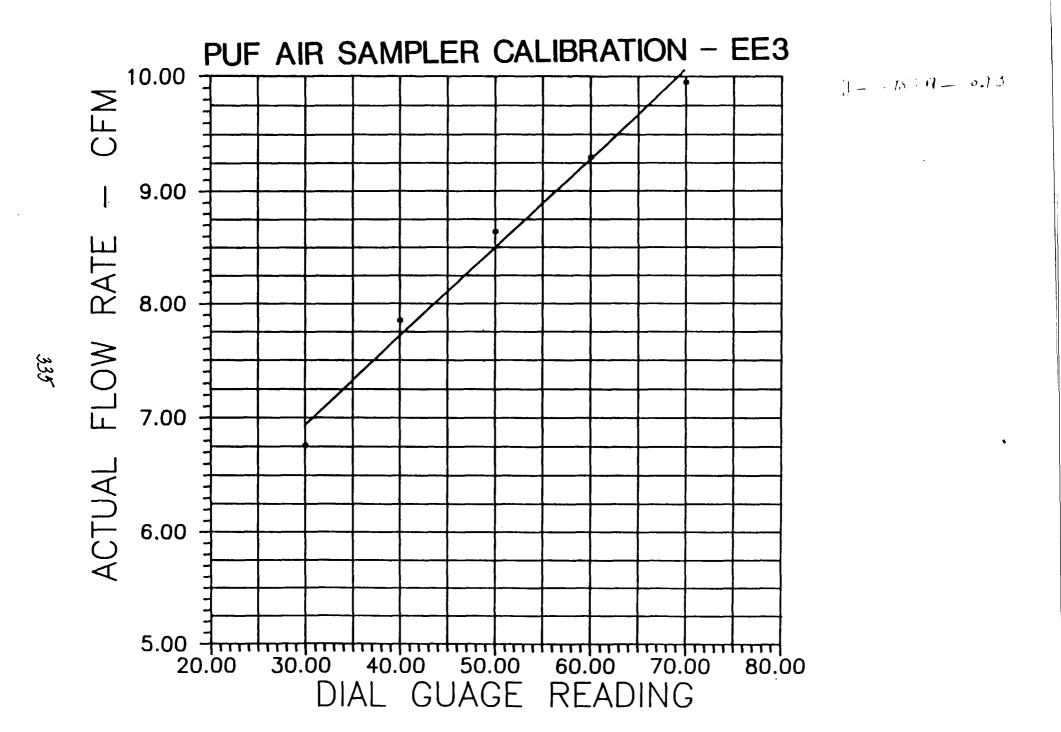

## CALIBRATOR ORIFICE STATIC PRESSURE $\Delta H \cdot \text{in. of H}_2\text{O (6)}$







For application see ref. 1

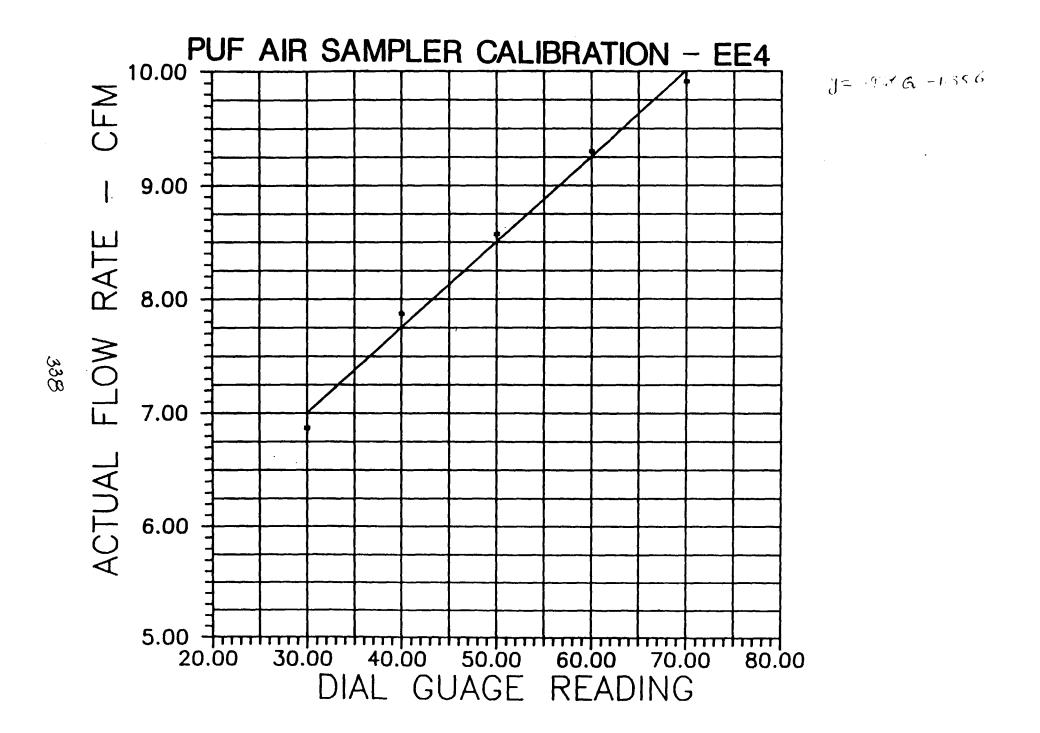


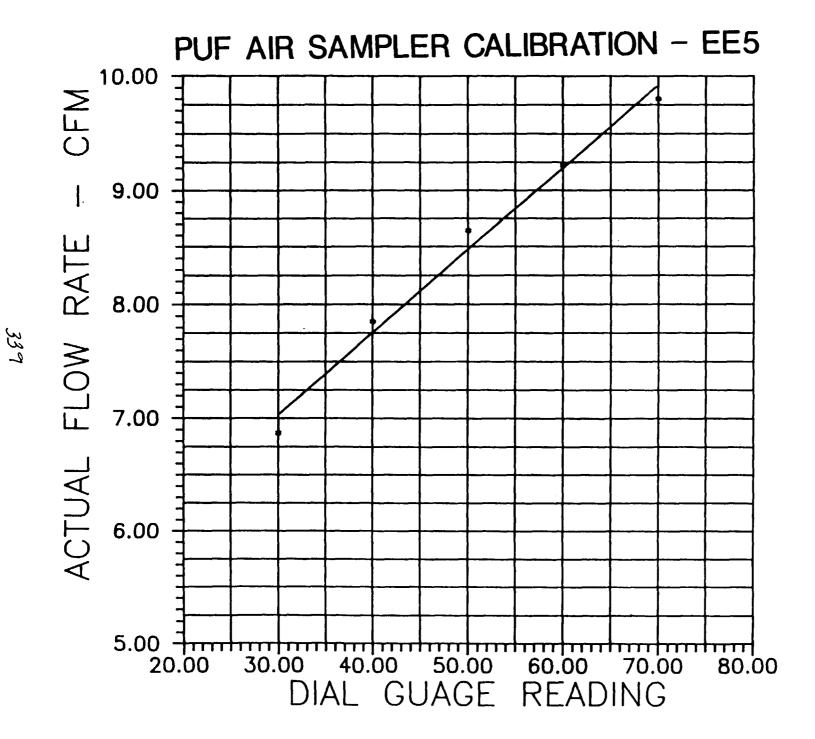

Name: A SE	SALL.	Date: 7/,5/47	7
Site Address:	ALAD CREEK - 3.	IFE G	
PS-1 Shelter No	).:	Station Pressure	30.02
GMW Model 40°00	CU No.: 45-C	-	
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. (OC)
70	3.7/3.6 NS.		64°F
60	3.2/3/		
<u> </u>	2.8/2.7		
40	23/23	-	
<u> 30</u>	1.7/1.6		
		<u></u>	
Comments:	UND SPEED & MAN		
	DIRECTION 220° (	su)	
	RH: 73 96		·····
• •	•		



Name:	EWALL	Date: 7/15/1	<u>27</u>
Site Address:	MAD CREEK -	SIFAG	<del></del>
PS-1 Shelter No	·:	Station Pressur	e:
GMW Model 40°OC	U No.: 45-C		
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. (°C)
70	38/36		64 Ex
60	34/32		••
	29/27		
40	2.4/2.3		
30	1.8/17		<del></del>
<del></del>		·	
			-
Comments:	WIND SPEED &	mpif	
	VERCLION 330.	(sw)	
· · · · · · · · · · · · · · · · · · ·			

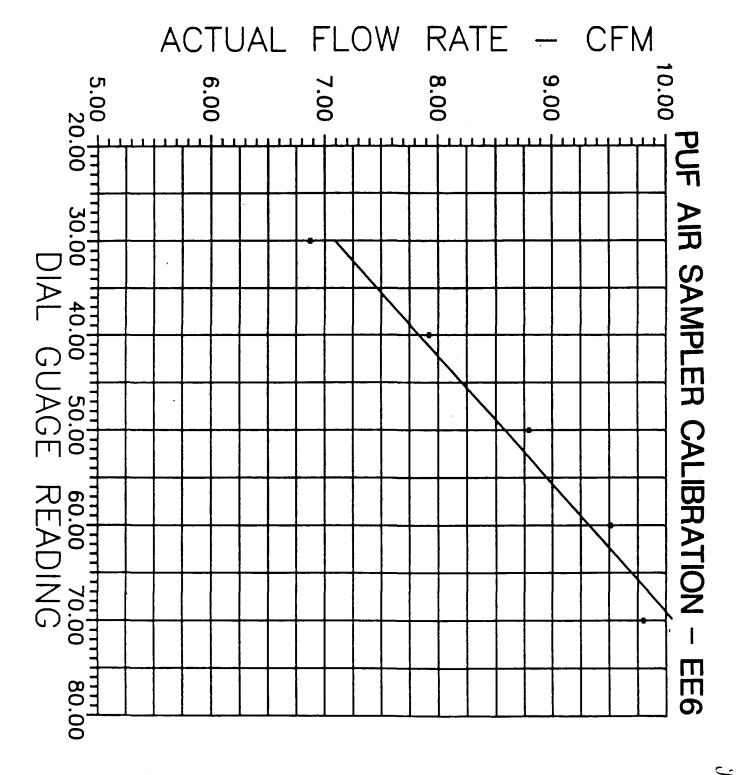



Name:	Stwall .	Date: 7/15/	<del>\$7</del>
Site Address:_	NEAD CREEK . SI	7 <u>4</u> G	
PS-1 Shelter No	).: <u>&amp;£ · 3</u>	Station Pressure	30.02
GMW Model 40 00	CU No.: 45-C	<del></del>	
Magnehelic Gauge-Reading	Manometer Reading (in. H ₂ O)	OCU Flow- Rate (tcfm)	Temp. (°C)
70	38/37		64°F
60	34/3.2		
50	2.9/28		.,,
40	2.4/2.3		
30	1.8/1.7		
		<del></del>	
			<del></del>
Comments:	WIND SPEED & MI	9,4	
	AIRHTION 330°	(sw)	
		_	
	,		•




Name:	D. SEWALL .	Date: 7/15/	<u>'\$7</u>
Site Addre	ess: NEAN CREEK -	Site G	
PS-1 Shelt	er No.:	Station Pressur	e: 30.02
GMW Model	40° OCU No.: 45-C		
	•		
Magneheli	.c Manometer	OCU Flow- Rate (tcfm)	Temp. (OC)
	$\frac{\text{Reading (in. H}_{20})}{\frac{77/67}{3.7} \frac{400}{3.7}}$		
			64°F
<i>6C</i>	•		
<u> 50</u>	2.8/3.8	<del></del>	, (
40	<u> 2.3/2.4</u>	·	Р.
30	1.8/1.8	•	
<del></del>		<del></del>	
<del></del>			
		•	
Comments:_	www speed 8 m	·	
_	ARECTION 330°	<u> </u>	······································
_			
· ·			
•	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		
	A		•
•	6		
			·
	X X		

Page: 5 of 7


Name:	stwall .	Date: 7/15/47	
Site Address:	ARAA CREEK - S	116 6	
PS-1 Shelter	No.: <u>FE-</u> 5	Station Pressure:	30.02
GMW Model 40°	OCU No.: 45-C		
Magnehelic Gauge Reading	Manometer Reading (in. H ₂ O	OCU Flow- ) - Rate (tcfm)	Temp. (OC)
<u> 76</u>	37/36		64%
60	3.3/32		
	2.9/2.8		4.
40	2.4/3.3	<u> </u>	· ·
<u> 36</u>	1.5/1.8		· ·
	<del></del>	·	
	•		
Comments:	WIND SALED & M	· · · · · · · · · · · · · · · · · · ·	
·	ARECTION 320°	(sw)	<del></del>
			· · · · · · · · · · · · · · · · · · ·
	•		





Page: 5 of 7

Name:	SEWALL .	Date: 7/15/87	
Site Address:_	BEAD CREEK -	S.TE 6	<del></del>
PS-1 Shelter No	0.: <u>FE 4.</u>	Station Pressure	30.02
GMW Model 40°00	CU No.: 45-C	<u>.</u>	
	Manometer Reading (in. H ₂ O	OCU Flow- ) - Rate (tcfm)	Temp. (°C) -
70-68	3.7/3.6	·	64 %
60	35/34	í	
	3.0/2.9	·	• •
40	2.4/2.4 56	;	••
<u>36</u>	1.8/1.8 5.4		
		•	
Comments:	WIND CALEN &	MPIT	
	ALPACTON 220°	(sw) .	<del></del>
		·	



y. 0.769 c - 1.23

7 nagretalc EE-1 0 0 :7-22-87 5.44 6.286 7.03 \$ 27.5 % \$ (x) \$ \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ (3) \$ 7.70 st of Riversin Mit 1.6/1.6 2.7/2.6 2.2 /2./ 3.5/3.4 Talk of calleton of Parat (Q) 1 (in. H20) (44) = OH PE . Total Cometa su 1.28 1.457 1.618 1.764 1.846 2.0  $\epsilon$ 4.63. 5.254 5-834 6.356 6.648 alcat by m 7

(1) 
$$T = 460 + 89 = 549$$
,  $T_{544} = 537$ 
 $P = 30.21$ 
 $S_{14} = 29.92$ 
 $S_{14} = 7_{544} = \sqrt{\frac{30.21}{29.92}} = \frac{537}{549} = ...994$ 

(2)  $Q = \frac{1}{0.28} \left[ \sqrt{0} \frac{N_{54}}{R_{34}} + \frac{7}{1} + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + .$ 

ngukki. E E-2 DE of cabitie: 7-27-87 30 0 9 8 44.5 7.57 7.57 7.57 6.29 بر ت 7.03 9/2 The mometa Rode (oH) 1.8/1.8 2.0 2.4/2.3 Talk of calleton of Plansate (a) Et sta Concets an 1.524 1.333 1.663 1.778 (2) (cfm) (Y) 4.816 844.5 5.995 cocct

(1) 
$$7_3 = 5.49$$
,  $7_{54} = 537$   
 $R_2 = 30.21$ ,  $R_4 = 29.92$   
 $M_{543} = \sqrt{m} + .994$ ,  $R_{543} = \sqrt{oH} + .0.994$   
(2)  $G = \frac{1}{0.78} \left[ \sqrt{cme_5 t_4 oH} + .0156 \right]$   
 $Y = 0.74 \times 5.809$   
 $CC = 0.999$ 

```
Date of Collection 7-22-87 [ Table of Collection of Flow sate (B)]

EE-3 site G/R [ Versus M<sub>std</sub>

Constitution (1)

magnetable M (1) monometer (AH)

Corpe Reading std Reading (in. H20) = Pstd T (Cf.) (Y)
                                                                                                                                      (X)

(Constant 18 (1)

(Constant 18 (1)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(BH)

(BH)

(BH)

(Constant 18 (1)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(AH)

(
                                                                                                                                  (X)
                                                                                                                                                                                     3.3/3.3
                                                                                                                                                                                                                                                                                                                         1.8%
                                                                                                                                                                                                                                                                                                                                                                                                                         6.506
                                                                                                            7.89
                                                                              60 7.70
                                                                                                                                                                                                                                                                                                                                                                                                                                6.406
                                                                                                                                                                                                                                                                                                                      1.778
                                                                                                                                                                                                                                                                                                                                                                                                                                    5.941
                                                                              50 7.03 2.8/2.7
                                                                                                                                                                                                                                                                                                                            1.648
                                                                                                                              6.29 2.2/2.2
                                                                                                                                                                                                                                                                                                                                                                                                                                               5.32
                                                                                                                                                                                                                                                                                                                              1.474
                                                                                                                                                                                          1.7/1.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                       4.684
                                                                                                                                                                                                                                                                                                                              1.296
                                 T = 460 + 89 = 549, T_{Std} = 537
P = 30.21 \text{ in}
P_{Std} = 27.92
P_{Std} = \frac{T_{Std}}{T} = \sqrt{\frac{30.21}{29.92}} + \frac{537}{549} = .994
\sqrt{Connected OH} = \sqrt{OH} + .994 // M_{SD} > M + .994
(2) Q = \frac{1}{0.28} \left[ \sqrt{\rho_{Ha} \frac{P}{P} \cdot \frac{T_{SIJ}}{t}} + .0156 \right]
                        Q magoshlic Realing
Y = m X' + 6
                                              Y= 0.754 X + 0.589
                                                cr=999
```

344

of the state of EE-4 Callet 7-12-57 st o/R values m. £ 24 She

orge rechij 0 0 ک (J 8 7.57 5.44 1.9/1.8 6.29 XX 3 Rending (in. Hao) 2.4/2.3 2.9/2.7 maranete (AH) 3.3/3.1 = John Por 1.524 Cometa su (1) 1.663 1.352 1.778 6.406 5.995 864.5 4.884 (ch)

(2) 0 = 0.28 [JoH. P. TILL 1 Pour 7 Tate ( Janua EdoH = JOH + . 994 / MStd= 1m + . 994 Y= mx + 6 Y= 0.711 X+ 1.013 Std = 27.72 30.21 1 = 460+89=549, Tstd=537 29.92 € 9510. \$ 537. - .994

345

949 74 148 14.5 84.9 15.9 74 15.1 561 1042 74.5 05.9	السد (سانه)
949 74 148 145 849 159 74 851 851 561	てのし
949 74 148 145 849 159 74 851	
94.9 24 14.5 14.5 15.9 74 15.9 74	14:30
94.9 24 14.5 14.5 84.9 951	54:91
94.9 24	_
	16:5
\$ 39PE La ma 2 = 5-5	

L8/91/L

coolings and environment

# \$ 40 8P 78 101 as 200 00

			18.5	Lc		15:61
988	60.5	6 L.S	,0 2	72	561	981
			44.5	5 ٤		14:21
JE 9	40.5	21.5			971	132
465	60.5	b L·5	89 5	35	804	05:41
. 0		_	د . <b>۵</b> ۰ .	45	0 47	984 41:L

	(x) 1+5W	P+5,1	Roling (M)	كرية .	( wim )	• •
A 9. 3. 0. A10 - Values	14 -	(1)	- Mayara	ניארבה	Elopie Tire	

78/31/7 5-3=

ा म्हल्य

e kolebooker

reology and environment

m N	u)
0	w
:	7
	1161
	787

	20.00	16.43	· · · ·	И С	7:10	(Sis) -
		195	135	140		Time Elipatine
		182	126	4106	 	(page 1)
	8	o U	J U	N T	00 Cr	Magnetile.
	86.5	, 0	)	7 2 4	6.24	M(1)
		6.00	86.5	6.09		(1) AJ. 5+1 Ms+1 (x)
Total Air		5.11	5.10	5.17	•	(2) ArJ.Q
3695		-9 W 0	5 4 5	2123		An idea

2,4	27 1. 1.
	7/16/87

	19:39	74.31	14:30	7:18	(Sing)
	174	135	432	) )	(Min) (Min)
	17.4	- 135	432		(min)
	300	37	37	40	Magnetale Roly (M)
	6.17	6.11	6.11	6.40	(1) M(1)
<del>,</del>	6.13	6.11	6.25		AST.
70000	5.37	5.36	5.46	1	(2) 113.0
40/1	934	724	2359		Are refuse

Cu. P.F.

(2) Y= 0.711 x + 1.013

Sty = 1 m + Cometin Rate

Convert inche | P + Tstd

 $C S_2 = .997$ 

Air 10 love = 0 * Elpa Tro

11.6	1.1		Magnetali.	E	Arg. (x)	17.0	ArJ.a. Are refore
(Ma)	(Min.) (Min.)	(ww)	-/.37		-( v) -p.c		•
7.22	428	373	0	9	92.9	5.41	2018
14:30	12	11.7	37-	. 11.7	909	5.27	617
16:45	205	, oo L+	36	300	6.12.	5.32	047
2010		•	30	6.23			
					10 tas	To tas Air rot.	3582 at

EE-6 7/16/87

True (Min)	- Elaphe Turk (Min)		Magnetale Realing (M)	(1) Stj	A'] Ms+1_(X)	(2) 179.a	(3)
704							
	446	392	36		5.96	5.19	20341
			- 3.4				
	· · ( )-)·	'	33	5.77	- 5 8/	5.08	6021
	160	141	33 34		5.79	5.06	7/3
19:25			34	5.81	,		
					って	D sis vol.	3351

Time (Min)	Elopa Time (Min)	Cortectod Time (mon)	Magnetale Realing (M)	(1) Stj	_AvJ _Ms+j.(x)_	11J.G.	(3)
6.00				7.36			
	300	246			6.56	5.47	1346
11.00				- 5.76			•
	210	172			5.7/	4.84	332
14:30	247	203	- 32 33	5.67	5.7	4.89	982
18:3/			·- <b>3</b> -3 ·	5./3			

 $C_{6} = \sqrt{\frac{30.14 \times 537}{29.92 + 529}} = 1.011$   $C_{6} = 1.003$ 

CB2= \(\frac{30.10+537}{29.92+545} = .997

(2) 
$$Y = 0.733X + 0.658$$

Time - Eleph Time (Min) (Min)	Elapa Tine (min)	(mm)	Resident (1)	12. Arg. Arg.a.	Are refore
6:10	290	90	376.10	5731 74.5 04.9	15751
14:30	0	209		5.97 - 5.23 1093	1093
	22/	220	18.5	5.83 5.12	9211

3794

to to Cat vol

(2) Y= 0.74 X+ 0.809

354

and upple # @ = onless 6,4 ( ?

6850 + X 55L 0= 1 (2)

110.1 = 1,9 2 799. - 59 2 600.1 = EVA 3 Trop opmo) + W = 1750 (1)

A10_Value	(z)		(1)	Magneth (M)	(one,)	و د د استه	- (min.)
E771	10.5	985	£79	85	067	767	80:9
ち L 6-	99.4	04.5	64.3	-08	6-07.	- 510 -	00://
17071	854	PS.29	18.5	87	11-7	777	08:41
3231	Joh vol.	VJ.1	L 2.5	<i>8</i> z			78:81

7 3.'S 28-21-2 \quad \( \xi - \pi =

remogs and environment

15.0 Air reforme	1683	/ 0 / /	1235	4019
173.0	£ 5.	5:32	5.28	
1) A7. A 15+1 Ms+1 (X)	649 5.63	606 532	o .	To 5 10 10.
() N (3)	80 %		2.9 5	<b> </b> *
Kentig(m) NS	47	) r	36	
(pre. 7)	299	20.7	-234	
Time Elapse Time	€ 0 €	210	237	
The (min)	5:57	14:30	(8:27	

Aio Value	-0.CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA - CVA	P+5 //	Magichele Reding (M)	(mm)	Elophe Time	
6971		14.9	74-			25:5
ファ <i>ワ</i> ノ	664 9ES	70.9	9.8	105	<u></u>	-00:11
L991	815 865	<b>,</b>		9-0-7	510	
3911	171.5 - 18.5	۔ ک 8 کر	78	7 7 9 - 7 3-	. 08 5	08:41
		06.5	38		_	02:81
1298	Lad plus Vol.					

معتاد الم

· HO Dather

ere talle in milital estante elettere el

EE-6 7-17-87 Sit G

Time (Min) -	Elegative	Cottetel Time (mm)	Magnetale Realing (M)	(1) 19 ₅₊₁	AvJ Ms+j_(X)	1 J.G.	A10_ Volume
6:02			40	6.410	·· - · · ·		_
	298	219		÷	6.21	5.38	1178
	2-10	-155		·	- 5.93	5.17	80/
	248	18.3	-		5.74	5.03	920
-	·- · · · · · ·			To	ital pis vol	<i>!</i> .	2899

		Air volume = @ *Consented Inc	7 Y=0.733 X+0.658	Construe factor = ( f )
359				$CP = \frac{50.23 + 537}{29.92} = 1009$ $CP = \frac{30.17 + 537}{547} = 0.995$ $SP = \frac{30.17 + 537}{29.92} = 0.995$
				CE - CP - 100

	19:04	1. J. J. J. J. J. J. J. J. J. J. J. J. J.		
- late	274	250	198	SITE GI/R SITE GI/R
TETEL - Au volume - 40 55-6ft-	271	747	196	7-21-87
4055	· · · · · · · · · · · · · · · · · · ·	<b>1</b> . 0	56	Magnike Ruly (m)
Gf #	-660	7.19	7.55	(i)
	6.69	6.79	7.17	AJ.  Mati (X)
:	95.5	5.63	16.5	
4055	1507	1370	150	1.3.0 An ideax  Y(the) cf+

Party by 50

			_				
			310	· · · · · · · · · · · · · · · · · · ·		<del></del>	
<del>_</del>					······································		
							·
<del></del>					······································		
		····					
						<del> </del>	
					אינונג פיע ווייב	7#6 = may	0A 414
						1:	
			-	<del> </del>	<del></del>	•	
		······································		<del></del>			
	······································			<del></del>	608	8.0 + X7 L.O	<del>-</del> 人 (
		<del></del>			<del></del>		19
					•	PASI. C	٢٠٥٤ ع
		· · · · · · · · · · · · · · · · · · ·	166.0	= 37	PAS1 +	mp-	رمدوي
		lav		15-	1		- 175.
		1001 = PON	600·j		14 th		
			<del>_</del> · ·			<del></del>	——
				-			•
							1
							1
							-
2 Las							-
8408		+#· ©	8 40E- ent				-
8405		11° 0	<u>-</u> -				-
-			8 40E ent				07:6
840E	L1.5	18.00	<b>१</b> ८-५		1 412		
T 011		06·Z	<u>-</u> -				
-	- L1.5 L9E.5		1 0.9	9 &	- I 417 481	062 052	0E:H
L011	4×·S	06·5 91·9	<b>१</b> ८-५		681	०८७	0E:H
L 0/1		06·Z	10.9 { 5-19-	98		05Z LZZ	0 <b>8</b> :0
L011	4×·S	06·5 91·9	1 0.9	9 &	681	0 5 7	<b>08</b> :0
L011	4×·S	06 S 919 859	1289	9E 94	58 I 891	520 422	08:5 08:0
L911 L86 1756	25€ 819€	06.5 91.9 85.9 (X) 8+5W	10.9 1287		681	05Z LZZ	08:0 08:0
487 987 987	25.5 819:5	06 S 919 859	10.9 \$5.9 1789	9E 94	58 I 891	520 422	08:5 08:0
L011 L86 1756	25€ 819€	06.5 91.9 85.9 (X) 8+5W	10.9 1287		991 891 	520 527 	

العكوكم

**1**:

	O/R	7-2	1-87				
me	Elaphe Time_	(plated	- Magnetale Realig (M)	(1) N ₅₊₁	AvJ Ms+1 (X)	1°5.Q	Are volve
6:27	-		35 33	-6.54			
	233	231	_	3	6.23	5.286	122/
0:20			35	5·1·2·	- 21.		.02
4.30-	250	278.	73		5.821	4.47	123/
1. <b>30</b> .	244	242	50	5./3	C.81	-	1210
3: 34				5.97	7.06	<b>J</b> .	1210
Υ ' 		1	· ···· · · · · · · · · · · · · · · · ·				
		·	Total	2. Ais Volum	c= 3668	a. ff.	3668
					-		
					••		-
	<del></del>			. <del></del>	_		
		<del></del>					
(1-)							 
(1-)		ometa focto	Cf;=1	9		2	· <u>·</u>
- •		oneta fato		.995	- - - - - - - - - - - - - - - - -	2	
(1-) Std =		onector foctor	Cf;=1	.995	cfary=1.a.	2	
- •		e Titi	Ch = 1	.995	Cfarg=1.a.	2	
Courchan Qu	fector = J	Sta T	C f, = 1	.995	Cfrg=1.00	2	
Courchan Qu		Sta T	C f, = 1	.995		. 2	
Courchan Qu	fector = J	Sta T	Cf; = 1	.995	Cfary = 1. a.	. 2	
Courchan Qu	fector = J	Sta T	Cf, = 1 Cf, = 0	.995	Cfary = 1. as	2	
Couretan Qy -) Y=	Peto = _R	- 0.589	Ch = 1 ch = 0	.995	Cfary=1.ac	2	
Q/ -) Y=	Peto = _R	Sta T	Cf; = 1	.995	- fary = 1. a.	. 2	
Couretan Qy .) Y=	Peto = _R	- 0.589	Cf; = 1  Cf; = 0	995	Cfary = 1. a.		
Couretan Qy .) Y=	Peto = _R	- 0.589	Cf; = 1 Cf; = 0	995	Cfary = 1. ac	2	
Couretan Qy -) Y=	Peto = _R	- 0.589	Ch. a.l.	.995	Charg = 1 ac	2	
Couretan Qy .) Y=	Peto = _R	- 0.589	Cf; = 1	.995	Cfary = 1. ac		
Couretan Qy .) Y=	Peto = _R	- 0.589	Cf; = 1	995	Cfary = 1. a.	2	
Q/ -) Y=	Peto = _R	- 0.589	Ch = 1	. 995	Cfary = 1. as	2	

- 5, 6	04 0/R			87				
Time	Elephe Time" (Mio)	Cotton Time (mon	] 	Magnetale Realing (M)	N _{S+1}	Arj. Mstj (X)	-(2) _ArJ.Q	All Volume
6:32	- 228		- ,	46	6.84	4.47	5.577	937
10:20				36	6.61		<b>3</b> ·///	937
	250	185				5.84	5.165	955
4:30	2 9 0	212		32	5.67	- /=		10/-
19:18				32	5.67	5.67	5.03	1067
					-	_		
					7	Total Ais		2959=
	- · - ·		<del></del> -		-			
					· - · · · · · · · · · · · · · · · · · ·			- - 
		ometor foel			1.0e 9 		.	
(1-) 5+1 = Coureton	_	emetor fort		- 6; -	1.009		1.08.2	
	_	emetro foel P. Tstd 3td T		- 6;	1.009		1.00.2	
Courte	_	<u>P                                    </u>		= 6; = ch; =	1.009		J.GB.2	
Courte	freto = V	<u>P                                    </u>		- Chi - Chi -	1.009		1.08.2	
Gureta.  Gy  2) Y=	0.711 X	P . Tstd 3td T + 1.013		e6; - e6; -	1.009		1.08.2	
Gureta.  Gy  2) Y=	freto = V	P . Tstd 3td T + 1.013			1.009		1,00.2	
Gureta By 2) Y=	0.711 X	P . Tstd 3td T + 1.013			Loo 9 0.995	- ( f A 1/2 =	1.08.2	
Gy By 2) Y=	0.711 X	P . Tstd 3td T + 1.013			1.00 9		J.08.2.	
Gureta By 2) Y=	0.711 X	P . Tstd 3td T + 1.013		- 6;	1.009		1.00.2	
Gureta By 2) Y=	0.711 X	P . Tstd 3td T + 1.013		C61- C62-	1.009		1.08.2	
Gureta.  Gy  2) Y=	0.711 X	P . Tstd 3td T + 1.013			Laa 9 0.995		J.QB.2	

: τ

	દુ જ દ	
<del></del>		
	· · · · · · · · · · · · · · · · · · ·	
		any with a series of
<del></del>		
		01:1+ x 689:0 = 1 (-
<del></del>		R
		, r+g,
		Courete forto = 1 1 11
		apol agency + W / = 145
	- L-8-9 14	
JL4.5 SE	9	5 کے ط
_	9 48.9 04	25.4 05:4
894.5 <b>4</b> 8	·9 48·9 9 48·9 04	5 کے ط
_	·9 ·9 ·9 ·9 ·9 ·9	0:50 0:50 0:50 7:00 7:00
894·5 48	·9 48·9 9 48·9 04	0:50 520 520
894.5 hs	9 48.9 9 48.9 9	25.0 05.20 05.30 05.30
894.5 48 49.5 65.	9 48.9 9 48.9 9	11.6) - (min) - (min) 22.0 25.0 4:30
894.5 hs	19 48.9 04 9 48.9 04 9 48.9 9 7	25.0 05.20 05.30 05.30
294.5 48 49.5 48 141 (X) 141 (X) 141 (X) 141	9 48.9 9 48.9 9	11.6)

szalod

==-1 s, to 0/R-	,	· ·· · · · · · · · · · · · · · · ·	T 0	00		
cit 0/0-	-71-2248	7	los beco	& Down		
Time - Elapte Time - Min) (Min)			(1)	A·J		(3) A10_Volume
Min) (Min)	Time (mm)	Realing (M)	Sta	Ms+1 (X)	··	
,	<b>C</b> /				<b>-</b>	
				. –		
		÷				
		· · · ·				
			- <del></del>			<del></del>
		== === =			<del></del>	
		<del></del>				
(1)						
(1-) m +- Com	eta lata					
				· · · · · · · · · · · · · · · · · · ·		
Courton freto = P.	Tstd					
Pst1	<del></del>					
<del>Q</del>						<del></del>
2)						
J					· · · · · · · · · · · · · · · · · · ·	·
					· · · · · · · · · · · · · · · · · · ·	
. 1			<del></del>			
AID VOLUM = G #	The					
					· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·	
	<del> </del>				<del></del>	

related by ma

10-20-87

FE-2 7-22-87 sit O/R

Time (Min)	Elaphe Time" (Min)	Collected Time (min)	Magnetale Realing (M)	$N_{stJ}^{(1)}$	ArJ. Ms+4 (X)	1°9.a	Are volume
6:08			3 <i>8</i>	6.21			
12.00	352	279	30	5.93	6.07	5.31	1481
12.00	180	142	35	>.4 )	5.84	5.13	728
15.00	254	201	33	5.76	~ ==	5.15	10 37
19:14		201	36	5.98	5.87	<b>)</b> •1)	10 3/
					TOTAL	0	3246 cu \$1.

(1)  $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$   $StJ = \sqrt{m} + Country forto(Cf)$ 

FE_	3	7-22-87
site	G/R	,

Time (min)	Elapse Time" (Min)	Collected Time (min)	Magnetaki Realig (M)	N _{St}	A1J. Ms+1 (X)	1°J.G.	(3) Are velone
6:35			54	7.40			
12 05	325	325	42	// -	6.94	5.82	1891
	180	180	72	6.49	6.41	5.42	976
15.00			40	6.34		- a-	• 10
15.00 18.57	237	237	40	6.30	6.94 6.41 6.32	5 · 35	1268
_					TO TOPA.	· •	4135 GF

(1) foreston forto	
Conschon freto = \ P . Tetal  Bota T	C Fz = - 0 - 9 17

(2) Y= 0.754 X+0.589

3) Ard volume = O # Elaps Time

F-04 -	7 –	2?	- T	7
--------	-----	----	-----	---

	G/R Elapse Time (Min)	(other Time)	Magnetale Realing (M)	M ₅₊₁	Arj. Mstj (X)	(2) Arg.Q	Are veloce
6:07			3 2	5.70			
12.00	353	279	24	4.91	5.30	4.78	1334
	180.	142		, ()	4.91	4.50	639
15.00	253	200	24	21.91	5.09	4.63	926
19:13	2))		28	5.27			156
					TOTE	Air	2899 Cu.#.

(1) -Marie Marie Courter forto	 C farg=1002
Courter Preto = P. Tstd	 

(2) Y= 0.711 X + 1.013

3) Air volume = G # Elipse Time

FF-05	7-22-87
sit only	

Time (min) 6:14	Elaphe Time" (Min)	Collected Time (mm)	Magnetale Realing (M)	10		(2) 1°J.Q	
	346	341	38	690	6.54	5.61	1913
12:00	180	177	30	6.09	6.13	5.32	942
15:00 18:26	206	203	,	6.06	6.07	5.28	1072
18:26			37	6.06		TOTAL PLI IN	3927 co.ft

(1)	
- M + Cometon foctor	<del> </del>
Constant fector = P + Tetal	· ·

(2) Y= 0.689 X + 1.10

. - -

# 3) Ars volume = Q + Elipse The

EE-6	7-22-87
site G/R	

Time (Min)	Elaphe Time" (Mia)	CoMated Time (mon)	Magnetalic Realing (M)	M _{Std} (1)	Arj. Mstj (X)	1°J.G.	Are volume
6: 21			46	6.83		<i>-</i>	10
12.00	339	337	35	5.43	6.38	2.7	1857
	180	179	- 1		6.38 5.88 5.87	5.13	918
15:00	221	219	34	5.821.	5.87	C-13	1123
13:41		. ,	35	5.90	,		ŕ

Total pie volone 3898 G. A.

Low Volume Sampler
Air Volume Calculations and
Calibration Data

) squar soit of the coeffeets mue used
in the calculation of our volume by high volume samples
of softeness of our volume by high volume samples

500.1	566.0	۱۰۰۱ک	68/22	16 "
600.)	1	810.1	L8/12	
9001	166.0	201	L8/L11	
L00.1	466.0	701	48/91/	
				,,,,,
700.1	766.0	5101	18/22/	'L ,
600.1	0.1	1.018	18/12/	
9001	1660	70.1	L8/L1/	
L00.1	466.0	20.1	L8/91/	
_			- <b>-</b> , , , ,	
700.1	166.0	510.1	L8 /27/	
P00.1	0.1	810.1	18/12/	
900.1	166.0	Z 0 · !	LSILIIL	
L00.1	466.0	701	L8/91/L	
				,
_500.1	566.0	510.1	L8/22/L	. //
600.1	0.1	210.1	48/17/4	A
9001	166.0	70.1	L8/L1/L	//
L00.1	4660	201	L8 /91/L	Et)
			- , ,	
7001	1660	١٥٠١ك	L8/22/L	N.
6001	0.1	810.1	L8/17/L	"
9001	1650	20.1	L8/L1/L	,
Lasil	4650	70.1	L8/91/L	7 33
				0.25
700 i	566.0	10.1	LalzzIL	,
6001	0.1	810.1	La1121L	p
900.1	166.0	301	L8/L1/L	//
L00.1	766.0	20.1	L8/91/L	। <u>च</u> ु
And rocke	End of Ten	ta Liteals		
Sprand (1)	so feel for	- 12448)	37.00	00 50 704E
	σ <u> </u>		1	on July

Consider Factors for Calladoron pupad by mo of plus valence at stendard Temposerties

. .

Air volume colacidator of somples Collected by law volume somple contd. seemed by or C

DC-CT- 26	Dc-c7-25 Oc-P7-25	DC-CT-24 OC-PT-24	DC-CT-23	DC-CT-22 7-2	DC-CT-19	DC - CT-18	OC-CT-17 OC-PT-17	DC-C7-16	DC-CT-15 7/21/87	
, EE Z	0 m	// // // // // // // // // // // // //	* ¶	7-22-87 EE2	, e	en en en	/ T.	Fi 6 Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	t spetano	
£83	1.00.1	7 20 L	402	<b>2</b> 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9	206 206	202	202	212	100 000 000 000 000 000 000 000 000 000	(
516.95 903:3	518 992.6	180.15	736.5	535.2 972.75	9/89	499.9	343.9	5 68 3 377	had Average stands	
0.25		.089	o. 259 .091	0.268	0.465	0.248	0.174	o·293	.) 10 TOTAL A.A) 10 10 10 (m ³ ) 0.275 0.497	
0.251	0.25 Z 0.482	0·237 -089	o.260 .09/	0-269 0-488	0.256	0.2509	0.280 0.176	o.296 o.196	0.277 0.50/	

Consection factor for standard Top. 8 press, fire alle, but tille for the conflict)  $\Lambda + \frac{1}{d} + \frac{s_1}{s_1} = P_1 s_2$ (1) 464.0 1640 58 826 ووي 944 21-11-15 342.0 172.0 9:55 944 وود マノーイン - コ 625.0 925.0 844 0011 933 11-11-20 681.0 881.0 T.EPE 824 9 33 11-12-0 108. 662.0 25.2.29 184 123 01 -18- > 275.0 142.0 25005 184 193 010-11-1 ه. عک ا 6450 9-616 984 E = 3 60-10 --4220 275.0 _(B55 984 €€3 60-11-16 064.0 187.0 56.166 16% 11 20-10-20 252.0 152.0 1.215 164 てラシ LBKIK 80-17-0 684.0 984.0 21.6101 LLY 523 x - Pr-c 5 972.0 425.0 6.894 LLY 523 ンローLコーコ( 815-0 POZ.0 5901 867 11 90-10-21 0110 69100 352.75 864 923 90-11-20 585.0 85.0 7.89.5 785 10-10 -00 842-0 14300 664 784 133 10-12-20 ٥-25 175.0 59.06.01 844 50-79-50 112-0 692.0 295.82 844 EE3 E0-42-20 0715-0 8050 6501 084 70-10-20 \$72.0 822.0 Standard Tents: 6.494 733 (1/1/2) TO -L7- 20 (4:4) Awnoge Flow to E (me) (1) " (1) * (N:0) on Idas She to us. Collect i by low volone samples Du Gg ponet and

lig prosport

7/1

Air volume cul-culotions of samples

: 0797

9<u>-</u>2

<b>V</b>	;							_	· ·		- 1	70	<u> </u>	<b>~g</b> *		_						_						
A constant (19)	Constitution 3	-						ON LOCATED DANAE ACCEDI	co -alone sporte actorol	BACKS SAMPLE	BACKEROUNE SINKE.											BOCKERS.NA SONALA	Arces Round Sands &	CO SACATE SAMAL DCAT OF	CO-LUCATED SAMELS &C-FF-01			
3000	ושמושרה נושב	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	. 647	C 2 C 2 3 4	16.3	( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1.14	(	1. 9-77	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.77	1	1	1.84	1-42	6-22	6.77	8- 44	6.73	1. 22	> ''	A.A. S	5.32	9. 77	9- yy	ſ	1	
	600.000	1.00 04.4	1-640,	124 903	186.01		14/182	D. 18 m	10001	1487	1043 -1	I	1	42	:	34	:	36	:	38	;	39	•	3.4	:		ı	1
	/w/7 (-w)	/w68/	10630.	519 3ml	198.341	1000	124 774	48T. 7ml	1- 000	47.00	947.3~1	1	ı	42	·.	34	:	38	;	40	•	•	;	36	•	ı	1	
	Straff Ires	6.7	۶	6.7	1,1	CY	ž	(7	7.4	c,	PT	2.3	ţ	<b>3</b>	ţ	ધ	¥	Š	ž	لا		Ł	<i>y,</i>	૮	ž	Ş	1	
	Var. 6: 40.6 V	E or be times, 150's or probably Acid	:	سر مر ۱۰۰ و ۱۸۵۰ دروه درسدد	(10 10 00 00 00 00 00 00 00 00 00 00 00 0	į.	:	5176 6 - NA CORNER	:	sm.6.44	:	B. And	Stank	6. nr. co	:	צים, סך ניינוני וצם זיי שישיא	:	5, ABS. CARRO FEM	:	SITE 6. NW COUNTA	:	88	:	Co d and A	;	BLANK	BIANK	
ارد معرد.	Sun. 100	76.45	5491	7655	1655	1710	011,	8/1/	N/4.	4732	132	ì	1	500,	1923	1501	1541	0000	3800	1839	6841	0,00	9000	5041	5061	ì	1	
AIR SANDING	2007 2007 12016	5KN0 0442	54:00 (x) 1/6	0.857	0.957	0900	5060	0630	0600	6935	0735	000/	000,	6000	0702	٥٠/٠٧	6114	0110	01.0	07.8	6779	0793	0732	4010	0104	000	, 000	
_	15 miles. 4	Ac 1503 31	16 62.20	Dr C7 03	60.77.03	٧٥ - ١٥٠ / ٥	10 /4:30	₩ .50 .70 .96	* 30 * 14	30.73.30	80.Pr.05	0C - CF-07	81-AT-07"	DC-7E-0/	10-11-01	4c. Ac. 02	de Africa	80-20-30	Ac . Fr 0 3	9c. Pc. 04	40-14-04	DC -PC - OS	DC 144.05	70.2V.0V	90-77-00		DC-66.07.63	-

						Z)	*		1	7.	左	÷,			æ	-	<b>₩</b>	~~			-			•	Ē			
	AC-FA-14	0C- AC-14"	AC- PT- N	46- cr- 14	06-1/213	AC- AC-13	AC - 7/6 - 12	AC- PC-13	AC-17-12	4C-CF-19	N. 18-11	ØC · AC - //	-ac-75- // *	0c-cr-// T	4c- FF-10	AC-A-10	Ac - Pi-10	Ac- c7-10	4C - 84-09	DC-12: 09	AC-81-04	4c-CF-09	4c- Nr- 08	DC: 10:08	4C - PF-08	AC-cr . 08	. Medic as	80
-	*																_						_			7/17/87	Anca	
					6547	0557	-553	6553	0900	0700	603	Con	0847	0847	600	0600	Chro	Chro	\$000	8080	Ø.80	cállo	06/0	0600	0830	0830	Wast Lord	
							<u> </u>		1656	1656			1645	7642			1643	7643		i	1636	1636				1631	Can Lac	
	3.4~	Degan	ALANX	D. Aux		31/E 6 . 20				Ju al 3,7% 6 . 4				31/4 6 · ma				SITE 6. NE CORNER			•	AL OF SITE O, MAY CAME				SOFAC PLACE FOR 3 as menns	Jacobie	
		•	Jen	اً ا	-1	count	٠	1_	1_	swol site 8, 405 is well Ed biol	<u>.</u>	-1	<u> </u>	coanta	_		L	coence			1_	W care Fance	<b>4</b> -	1.		D 3 as menny by.	e totalian	
		}	3	ç	7	3	*	7	19	९	<u>}</u>	7	767	C Y	, ,	7	į	c.r	}	7	٦	ç	} }	مر	<u> </u>	Č.	al duas	•
	١	ı	1	1	*7	47	~4	74	104/11	5475~1	40	ð ö	125501	75.05	53	53	189.5.1	545121	æ	<b>8</b>	1068 m/	£45 8ml	**	*	10/1~1	506 /~/	E104 3/ARC	
	1	ı	1	,					756 7	463.1			1241	305.4~1			355.24	456.0m/			367.2~1	5/32/			966 9,01	5/8/m/	Ctow Cox	
1	ł	ł	1	1	+ 22.4	4. 44	466.5	M. M. C.	:	A. ~ P . 3 . 20 7 , mare /	46.6	6.5.6	:	200/12/08, 200.0	+ 46-1	64-1	:	ه رسوم رفانه د محده	****	84.3	:	۵ بعد ويوزمي	*****	. v		June 13451 June	MACICAAN COM	
							- <del></del>			<del></del>	<b>←</b>			(													كالعكاويد منا	81

	势		-1-		ń.								-=				~		<b>-</b>	70.	_	<del>-</del> ,-	, C		-	7-	· Lagran	
	4c.14.31,	AC-PC-31	46-61-21	Ac-er-21 T	DC-/7-20	4C- AC-30	10.4.19	Ac-AC-17	AC-P7-19	Ac-cr-17	Oc- F4-18	DC-ACVE	A C . PF - 18	4c · cr · 18	40-14-17	0c-/c-/7	40-01-17	AC-CF-17	4c- FF- 16	11.30.DE	9c · N - 16	4C-CF-16	Ac . 15-15	AC-AC-15	AC-PT-15	0C-c1-15	SACON NA	84
A STATE OF THE STATE OF	ľ																									7/21/67	Aaile	
	0700	0700	0700	• 700	0 703	0102	0440	0640	2636	-826	4590	0654	08 33	0833	0633	CE 30	0800		0637	0637	0800	0.800	6633	0633	0821	1690	Sidel Link	W. 216
	1	1	ı	1	,904	1704	,049	,849	450	123	,,,,	1911	1658	16 Sg	/7/8	, 7, 8	7445	1643	1834	1834	1635	16 35	1930	1920	5431	1647	Cas Line	SAMPIN G
	ALANK	Anx	Acons	Beany	:	1 Sitte	:	nodomiau Au	•	51-1 - watcher that the Sons	;	Ę	:	Sm Androw . WACKEROUND	:	•	:	WALLES - NOT MOUSENED	:	5	•	•	:	an Adrian . NOT mendana	:	nes therman and mouseum	sance w	
	- 1	.,			-	-	:  :	Tow or sime	:	on 5.775 Q	·	OACKE Annua		Makeu-0		nos musum rea	.i	andina speck	: J-	And stated	:	Mares some	:	ensure rence	;	wastern that	ist Alien	٠
	14	7	?	¢	,	?	7.7	?	76	Cr	15.	2	*	c,	*	>	``	Ç	3	?	7	CT	Ì	7	?	C/	0/20	
	١	1	1	1	.56	56	46	76	973.7~1	5012-1	44	44	772.8~	5/3.0~/	46	ፉ	Sycal		72	イス	515.oml	5000-1	461	24	1200	534.9~/	May Wall	
4票位于 有证	,	1	i	1	44	44	٠,	4,	863.9~	+ 5000 m	34	45	# 1007m 1	200774	32	رد	185.4~1	615.541	36	36	12090ml	W6.6m/	7.5	74	918.6~1	120455	Gran Cord	
	_	,	١	,	1.97	66.1	2.5%	5.77	:		4.2.6	1.27	:	Auri 13130, mas	44.4	20.4	:	***********	A.S	6.4.3	:	ه سعد رودود محده	44.7	5.7.5	:	عمصرنقاءور صدي	sametel cate	
				•											(معنفه عدد عيده	ON- COOPING SAMPLE (AC-15)	: :	(sr.se) semira Pazition. 00					Advance on the second	sounder rande someti-			Carroninis	85

	4	÷								Į.					7	7-									· ·	<b></b>	_		7)-27 <b>-</b>	
	4c. FF-94	4c.7c.26	86-77-38	90.00		AC - AA-W	4c-Ac-27	Ac-17.06	4C-7C-36	9c. N. 36	36.67.36				90	AC CY SY	AC. XX 30	A: A: 3	40.07.04	9C - C/ - 24	4c.1/-33	40.70 au	DC . A.F . & 3	8 6. 73. 20	26. 24. 32	#C-7C-2#	4c N 43	40.07.22	1000 FE COR	86
1	+	_	<u>-</u>	<u> </u>							-																	7/03/87	22/72	
	0800	<b>○₹</b> ∞	0440	0000	0001	m/ 17	0627	ocit	, Amo	2480	2430	0631	/63/	0650	000	2007	201	0607	240	0480	0635	0635	0900	0900	80.70	8070	0825	2680	siasi kas	
	1	1	1	1		ì	1	1036	763/	8411	16 48	(48,	/48/	1654	7634	3.6	2.77		) ( W )	> 5	<b>,157</b>	1381	1702	1702	1914	17/4	243	1642	JUST 843	
	acaux.	Drawk	Acron	31400	;	2 2/1 Appropria	SE PROFILE	:	SU - MORTHERY PRETON SITE O	:	Sw. warden Adrion site Q	:	•	:	SU PORTAN AACKGROUND		we selfent all monsours fende			NO Astrau - Art and a	:	WE WENER . AND JUNE STATEM	1	WE ENANCE - NOT FIND STATION	,	ne feetan sar monsome	:	mutalism sal manyania thuch	\$5000	
		<u> </u>		<u>.</u>	_i_	: 6	• •	:	San JIRO	:	104. 5114 Q		Y COMPANY		(Seemed)	· ;	mensours rened		: 2000		:	And states	:	fund sidtion	:	miamo fauch	:	on Maria Mence	Lec Arie~	
	4	ć	*	3	11	\ ?	<b>)</b>	6	Z	*	ct	4	2	PT	ct	7	10		; ;	<b>?</b> :	1	Pc	19	64	7	C	10	01	Chica	
	ı	!	l	١	38		3 :	11	47	966.5~1	517.001	3	×	100/100	\$15~1	Ş	and a	334.0m/	446. 9×1		•	دعر	200,1/	16.8~1	39	.38	1970.201	1540.8~1	Ciau 1/08/	
	1	ł	ı	1	,	1	٠ ,	;	37	840./3/	5/6.901	35	35	126.486	531.001.	) <b>8</b>	ม	10 Jal	523 ~ '		•	40	76.8 31	6119	36	3,6		-	Con Local	
	١	1	l	1	EC-1	1.99	66.3	1	, <u>, , , , , , , , , , , , , , , , , , </u>	= .	المسعد زود زرمدع	66-6	68.6	:	المراجعة والمسام	4.32	1.93	:	العمريداد ومدور	. O	,		:	A was live of the	۵ ۵	<u>`</u>	•	المعلم الألمود معالم	0	
				ביישהיונדבט.	Mr. A. F. Land Lines	west - Paras Aug Fire	mand desired as some							•					Macara JANA FAMANG	¥						•				87

# REF 3b

APPENDIX D

ANALYTICAL RESULTS

## Explanation For Analytical Data Summary Tables

All ground water results in ug/l.
All soil/sediment organic results in ug/kg

All soil/ sediment inorganic results in mg/kg

For sample location headings, the following qualifiers are used:

- + Denotes blank samples.
- * Denotes duplicate samples.
- Denotes that sample was not analyzed for the compounds listed.

For chemical results, the folling qualifiers are used :

- B Compound detected in blank samples.
- J Estimated value. Result is less than the specified detection limit, but greater than zero.
- E Estimated value. Concentration detected exceeds the calibrated range.
- C Result confirmed by GC/MS.
- * Duplicate analysis not with in control limits.
- R Spike sample recovery not with in control limits.

Ground Hater Volatiles

	SITE	\$11E 0	TITE 1	SITE 0	SITE B	SITE 0	SITE O	511E &	8116	S11E 0	H 3118	H 3115	SITE H	SITE H	9 3115	5116	
i	SANTE NUMBER NEL NUMBER DATE SANTES	EE-66 3-16-97	BC-68-02 EE-07 3-16-97	DC-64-03 EE-09 3-16-87	DC-68-04 EE-10 3-16-87	9C-68-05 EE-17 3-16-97	BC-64-04 EE-03 3-16-87	9C-64-07 EE-19 3-16-87	DC-6N-08 0 EE-19 3-16-87	DC-6M-09 EE-18 3-16-87	BC-6N-10 EE-01 3-17-87	DC-6N-11 EE-02 3-17-87	DC-68-12 EE-03 3-17-87	0C-60-13 EE-04 3-17-87	2-11-87 5-17-87	20 (m) 30 31 (m) 32	
1	Chlorosethan		1	į			1										
	2 Broscothas 3 Vinyl Chloride 4 Chlorothas																
	5 Nethylese Chloride	ź	:		=	5	-	22	61 1	2200 143	5	f 0\$1	. e.	69	-0	L ft.]	
	7 Carbon Bisulfide	:				:	2	3		8			, B	•			
	9 1.1-Bickloroethane																
	10 trans-1.2-Dickloroethene		-			7 -						76.30				G	
						-				3000		9000			7 7	-	
	14 1,1,1-irichioroethane 15 Carbon Tetrachloride																
	1/ dreaddichloreethane 18 1,2-Bichloropropane															-	
-		•															
	20 Trichloraethene 21 Bibroachloroaethane					7 ~											
.~ (		•	i	•	:												
7	Zi Bekzene 24 cis-1.3-Bichigropropene	•	₹ .	~	=		<b>3</b>	2000	2006	2006 J	1900	4300	7 2		-		
. ~		_															
	Zé Bromoform 77 demokul-7-combicens							Š	Ş	, 400		4100					
. ~			•	_				A: 7	2	3.68	-	000					
.7 1	_																
<b></b>	30 1,1.2,2-Tetrachloroethane 31 Iolinea	•		_				3	***	- 00.1	. 94						
1		=		. r	390 €	62	•	92 <b>.</b> 93.	25 T	7.007	90.91	11000	=		7	••	
, 63	55 Elbylbenzene 54 Styrene		-	-				E C			210		<del>-</del>				
		7	730					<b>961</b>	091		6 4 3	120 J					

ELTE	SITE G	- BLANK	SITE L	SITE &	SITE G	SITE 6	<b>DLANK</b>	SITE 1	SITE	SLIE 1	SITE I	SITE I	stre i	SITE I	BL ANI
SAMPLE MUMBER MELL MUMBER BATE SAMPLEB	DC-6W-16 EE-6104 3-17-07	BC-6N-17 + 3-17-07	2-18-87 2-64-18	DC-64-19 EE-6107 3-10-8)	BC-60-20 0 EE G107 3-10-07	BC-6N-21 EE-05 3-10-07	BC-6H-22 + 3-18-87	DC-GH-23 EE-13 3-23-07	BC-6H-24 EE-12 3-23-87	DC-6H-25 EE-6112 3-23-87	DC-6W-26 EE-14 3-23-07	DC-6W-27 EE-15 3-23-07	DE GW-28 EE 15 3-23-67	DC-6M-29 I EE-12 3-23-67	00-6W-20 •
1 Chloromethane 2 Brosomethane		-			•	•									
3 Vinyl Chloride										5 J		76	790	á J	
4 Chigroethane															
5 Hethylene Chloride	5.0	LN		110 61			2 63				56 J	2 3			2.3
A Acetone	3 N	14 8		620 B	330 8		1 83	29 B	40 D	17 8	1 <b>80</b> J	10 8	140 B	17 8	25 9
7 Carbon Disulfide 8 1,1-Dichloraethean												••			
9 1.1-Dichloroethane												10 120			
10 trans-1.2-Dichlorouthene				1 <b>9</b> 0 J	200 J						156	310	640		
II Chloroforo	2.1	1.3					1 1				110 J	•••	• • • • • • • • • • • • • • • • • • • •		
12 1-2-Dichloroethame				430	450										
13 2-Butanene (MEK)															
14 1,1,1-Trichloroethane															
15 Carbon Tetrachloride															
16 Vinvl Acetate															
17 Broadichiorpaethane															
18 1,2-Bichloropropone 19 trans-1,3-Bichloropropen	_														
20 Trichloroethene	•			320	300						270	<b>4</b> J			
21 Dibrosochlerssethane				3.0	300						210	• 3			
22 1.1.2-Trichloroethane															
23 Benzene	1.1		ı J	4150	3700	2 J	3 3		50	28	1400	5	550	75	
24 cis-1,3-Bichloropropene						· -								-	
25 2-Chloroethyl Vinyl Ethe	•														
26 Bresofora															
27 4-Methyl-2-pentanone				1900	2200						230 J				
20 2-Hexanone 29 Tetrachigroethene				433	75.0		4 J								
30 1,1,2,2-Tetrachlaroethan	_			420	350	14					474				
31 Toluene				7300	4300	2 1	4.3				240		740	1.3	
32 Chlorabenzene	,	1.3	1.3		3100	1 2			270	33	3100	120	550	280	
33 Ethylbenzene	•	• •	• •	£3 J	****	• •	• •		• • •	1.3	190		13	2.3	
34 Styrene				59 4							•		· <del>-</del>	. •	
35 Total Xylenes				286	240 J						للف		5.8		

300

.

	SITE	SITE 1	SITE 6	SITE 6	SITE 6	SITE 6	DL ANK	SITE H	SITE L	SITE 0	SITE O	SITE D	SITE 0	SITE O	SITE O	SITE O	SITE O	!
	SAMPLE NUMBER	OC-6H-31	DC-50-32	BC- <b>6</b> M-33	9C-6W-34	DC-60-34A	DC-GH-35 +		DC-6W-37	DC - GN - 38	DC -6W - 38A	DC-6M-39	DC-6W-39A	DC-6H-40	DE-6W-40A	DC-6W-41	DC-6H-41A	- 1
	WELL MURBER	EE - 20	EE-11	EE-6104	EE-G1v2	EE 6102		EE-6110	EE-6109	EE-21	EE -21	€€-?2	EE-22	EE 23	€€ -25	EE-24	EE-24	
	BATE SAMPLES	3-23-07	3-24-07	3-24-07	3-24-07	7-14-07	3-24-07	3-24-87	3-24-07	3-24-87	7-14-97	3-24-87	7-14-07	3-24-87	7-14-87	3-24-07	7 14-97	
															•			
	Chieroeethane Breezesthane																	
	Vinyl Chloride																	
	Chloroethane																	
	Methylene Chiorade			440			2 J		44 ,			52600	31000					
_	gestava	29 \$	1796 B	210	7 1		i3 8		650 1		ı	38000 B	34000	6.3		10		
	Carbon Bisulfide	47 •	1700	414	, •				•	•	,	38000 9	34000			10		
	1,1-Bichloroethene																	
	1,1-Bichloroethane												1700					
	trans-1,2-Bachloroethene			116									14000					
	Chlorotoro			114			1 J		730			3000 3	1900					
	1-2-Bichloroethane								7.34				2600					
	2-Dutanone (MEK)			540		4 5						4000 J 62000	2000 54000 E		11 6			
	· ·			51 3		• •	J				13 8				11 6	Į.		
	1,1,1-Trichlormethane Carbon Tetrachloride			31 4								7800	5000					
	Vinyl Acetate																	
	Dronodichloronethane																	
	1,2-Dichloropropane																	
	trans-1,3-Bichloropropene																	
	Trachtereethene			804								83000	44000 E					
	Bibroanchiorenethane																	
	1,1,2-Trachloroethane		4.4	4800														
	Benzene		460	1800				1	J 150			140000	150000 E			Įv	70	
	cis-1,3-Bichloropropene																	
	2-Chloroethyl Vinyl Ether																	
	Brecefore									_								
	4-Nethy1-2-pentanone			150					270 (	•		38000	2 <b>8</b> (44)					
	2-Nesanone																	
29												10000						
	1,1,2,2-Tetrachleroethane									_			12000					
	Talwene		100 BJ						970 (	•		15000	1300		17	1.	ı	
	Chlorobenzene		2500	1200	20	34		6				150000	180000 E			5	î	
	Ethylbenzene		840										850					
	Styrene																	
35	Total Tylenes		400									4600 J	2600			2 .	1	
						i												

385

D

•

•

. .

آا۔	J	SITE	SITE 0	SITE O-	SITE 0	SITE A	SITE R	SITER	ZITE R	SITE R	SITE R	SITE R	BL AME	PRIVATE	PRIVATE	PRIVATE	PRIVATE	PRIVATE	
		SAMPLE NUMBER NELL NUMBER DATE SAMPLEB	DC-50-42 8 EE-24 3-24-07	BC-60-43 EE-25 3-24-07	9C-6H-45A 6E-25 7-14-87	<b>BC-60-44</b> P-1 3-25-07	BC-64-45 8-284 3 ₂ 25-87	DC-GN-44 P-7 3-25-07	BC-GH-47 B-26A 3-25-87	BE-6M-4R0 B-26A 3-25-87	DE-60-49 B-25A 3-25-67	BE-6N-50 P-11 3-25-87	DE-6M-51+ 3-25-87	DC -6N-52 WRIGHT 3-26-87	DC-6N-53 SETTLES 3-26-87	DL-6w-54 SCHM1DT J-Zo-87	DC-6M-55 Mc GONAL B 3-26-67	DC-6# 56 CLAYTON 3-26-67	
		Chlorocethane Succeeding Vinyl Chloride Chlorocethane Rethylene Chloride Cetone	310 436	, si			71 8	1700 8	3 11	34 93	1400 B	26 83	2 D)	4 9J	12 F 10 B	B <b>9</b> 3	37 £ 9 BJ		ı
		7 Carbon Disulfide B 1.1-Bichloroethene 9 1.1-Bichloroethane 0 trans-1,2-Bichloroethene 1 Chlorofora	94 3						7 3 J				1 J		3 1			٥	
	17 17 18 19 19	2 1-2-Bichloroethane 3 2-Butanone (MEK) 4 1,1,1-Trichloroethane 5 Carbon Tetrachloride 6 Vinyl Acetate	570 43 J		5 91						16000								
		•	1000																
	22 22	2 1,1.2-Trichloroethone 3 Penzene 4 cis-1,3-Bichloropropene 5 2-Chloroethyl Vinyl Ether 6 Procefore	1800			2 J		1500	41	44 J		150						94	
	2 2 2 3	7 4-Methvi-2-pentanone 8 2-Mexanone 9 Tetrachloroethene 0 1,1,2,2-Tetrachloroethane	122															3 )	
	3: 3:	1 Toluene 2 Chierobenzene 3 Ethylbenzene 4 Styrene 5 Total Nylenes	130 1000 27 J			350 €	190	480 5000 95 J	7 B 190 2 J 7	1 <del>99</del>	760 J 8190	570	1 3	4 3	1 PJ		5 1 1 <b>9</b> 0	5 129 1/3	

### Ground Water Volatiles

	SITE	DL AMK
	SAMPLE NUMBER	DC-GH-S
	HELL NUMBER	
	BATE SAMPLED	7-14-07
	Chloroeethane	
2		
3	Vinyl Chloride	
4		
5		
6		
7		
	1,1-Bichloroethene	
	1.1-Dichloroethame	
10		
	Chierotore 1-2-Bichlaroethane	
	2-Butanone (MEK)	
	1,1,1-Trachloroethane	
15		
16		
17		
	1,2-Bichloropropane	
	trans-1,3-Bichleropropens	
21	Trichloroethene Bibrooochloroeethane	
	1,1,2-Trickloroethane	
	Benzene	
	cis-1,3-Bichloropropene	
	2-Chloroethyl Vinyl Ether	
25		
27		
28		
29		
	1,1,2,2-Tetrachtoroethans	
31		
32		
	Ethylbenzene	
34		
35	•	

STE	SIE 6	S1R 0	SITE 0	SITE 0	<b>2</b> 114 <b>6</b>	STRE 0 STRE 0	STTE B	SITE D	SITE #	SITE H	SITE H	SITEH	H 3115	SIR 6
SAMPLE MUNBER	#-35-32	DC-641-02	DC-64-63	DC-68-04	BC-58-05	\$0-85-J <b>8</b>	DC-68-03	PC-64-08-3	DC -611-09	DC-611-10	DC-58-11	DC-64-12		Dr. Gal.
HELL MUNDER	EE -09	£E-0)	EE-09	01- <b>33</b>	££-17	EE-33	61-33	61-33	EE-13	FF-61		19-33	3	
BATE SAMPLED	3-16-87	3-18-87	3-16-87	18-91-8	3-14-07	3-14-07	3-16-87	3-16-97	3-14-87	3-17-67	3-11-8)	3-17-87	19:11:5	3-17 67
Person	•	:			:		110000 6	190000 F	3 9917	4	950			
2 bis(2-Chloroethyl)ether										•	3			
3 2-Chierophenel				7			20000 £	33000 €	2400	7 13				
4 1,3-Bichlorobenzene									•	921	•			
5 1,4-Dichlerobenzene				-			220 J	250	76.1	3,400	92.5	=		
6 benzyl Alcohol							3	6	3		740	•		
7 1,2-Bichlorobenzene							380	200	2000	260	430	**		
C 2-Hethylphenel							7 85	350	T 97	7.	70.			
9 bis(2-Chloroisopropy)) ether		3.2						•	•	•	•			
10 4-Rethylphenel							14000 F	23000 E	939	. 1	967			
11 M-Mitresa-n-Biprapylasine									i	3	ì			
12 Herachloroethane														
13 Hitrobenzene								901	028		1 79			
14 isopherone									i		1 911			
15 2-Hitraphenol														
16 2,4-Binethylphenol		2.2						2806	Ç.		923			
17 Benzoic Acid		9							900	1 991				
18 bis-12-Chloroethony inethane									i	•				
19 2.4-Bichlorophenol							3 006 E	14000 E	7 009 E					
20 1,2,4-Trichlorobenzene							•		065	985	00.7			
21 Haphthalene							7 17	17.7	92	<u>,</u>	740			-
22 4-Chloroaniline	120						1 0001	1.000 6	(077	3 (977	2 0	23.0		-
23 Herachlorobuladiene									:		;			
24 4-Chiora-3-methylphenal														
25 2-Rethylnaphihalone	•									71.7	1. 74			
26 Herachlorocyclopentadiene										:	•			
27 2,4,6-Irichloraphenel							4160	(MO9	1800	071	OVC I			
											3 3			
										• •				
30 2-Hitraaniline							1760	1800	2000					

#### Ground Mater Sensyolatiles

29 2-Chloronaphthalene 30 2-Nitroaniline

	S	ite	SITE 6	SITE 6	BLANK	SITE L	SITE 6	- SITE 6	SITE 6	BL ANK	SITE I	SITE I	SITE I	SITE I	SIJE I	SITE
••		PLE NUMBER	DC-6H-15	DC-6N-14	DC-6H-17 +	DC - 6M - 18	BC-GN-19	BC-6W-20 8	BC-6W-21	DC-6W-22 +	DC-6W-23	DC-6W-24	DC -6W-25	DC 6N-26	DC GH-27	DC-6#-28
		L NUMBER	EE-6103	EE-6104	2 . 3 . 6 3	8019-33	EE-6107	EE-6107	EE-05	2 40 03	EE-13	EE - 12	EE-6112	EE 14	EE 15	EE 16
	PAI	E SAMPLED	3-17-07	3-17-07	3-17-07	3-10-07	3-18-07	3-10-07	3-19-07	3-10-07	3-23-87	3-23-07	3-23-07	3-23-67	3-23-87	3-23-87
	L PA	enol					4400	30000						1800		80
	2 bi	s(2-Chioroethyl)ether														
	3 2-	Chlorophonol					490	1900				5 J		370		
	4 1.	3-Bichlorobenzene										110				
		4-Bichlorobenzene					570	470 J				640		916	10	119
		nzvi Alcohol					5400	8600						230 J		359
	71,	2-Bichlorobenzene					200 J	190 J				110		220 J	4.3	15 J
	2-	He thy I pheno l					200 J	810						89 J		76
	7 bi	s(2-Chlorossopropy)) ether														
1	0 1-	He thy i pheno i					2200	9000						220		
1	L N-	Hitroso-n-Bipropylamine														
1	2 He	zachloroethane														
1	3 #i	trobenzene														
1	4 ls	ophorone														
- 1	5 2-	Hitrophenol														
1	6 2.	4-Broethylphenol					1400	4300								
ı	7 Be	nzosc Acsd					35000 E	150000 E								
1	9 b1	s-(2-Chloroethozy)sethane					2400	7300				2 J		2900		
1	9 2.	4-Bichtorophenol					480 3	450 J				22		1000		
2	0 i,	2,4-Trichlorobenzene					1900	1700						2700		
2	l Ma	phthalene		8 J			21000 E	18000						57 J		230
2	2 4-	Chloroaniline										140	14	8260	19	9600 €
2	3 He	zachlorobutadzene														
2	4 4-	Chloro-3-methylphenol												140 J		
- 2	5 2	Methylnaphthalene					· · · · · · · · · · · · · · · · · · ·					1.3				9 1
		xachlerocyclopentadiene										• •				, •
		4,6-Trichlorophenol						350						290		
		4.5-Trichlorophenol												•		
		0.1														

	3115	1 3115	DI VIIK	1 3/18	9 3118	\$ 3115	\$ 3118	9 3115	PL ANK	SITE H	1 3115	S11E 0	0 3115	8116 0	5116 0	8 1118
i	SAMPLE MUNDER	DC-68-29 6	DC-68-29 6 DC-68-30 +	BC-68-31	BC-58-32	DC-68-33	5C-58-36	MC-68-34A	BC-68-35 +	95-89-36	BC-68-37	PC -641-39	DC-68-38A	DC 64-39	DC -88-39A	DC - Gu 40
	MIE SAMPLED	3-23-87	3-23-63	3-25-8)	3-24-07	3-24-07	3-24-67		3-24-8)	3-24-87	s - 24 - 87	66 - 21 3-24-87	EE -21 7-14-87	6£ - 22 3-24-87	ff 23 7-14-87	66 23 3 24-87
	Phenol					,					9			:	;	
~	bis (2-Chloroethy) lether					•					2			9	3 3	
•	2-Chlerophenel	;			3	-					3			120	 	
	1, 3-Bichlorebenzene	≘ ;			:	3 ;								320	290	
• •	Denzyl Alcohol	3			~ X	2								Londo E	15600	
~	1,2-Dichlorabenzene	=				-								7806	3 00011	
•	2-Methylphenel										f 9			2	2021	
• :	bis(2-Chloroisopropyl) ether				;									?	<b>:</b>	
= =	4 Metay Ipheapa				37						7.5			ŝ	118	
= :	M-Marinoso-m-Mariosylastics															
¥ =	Metachtor Designe															
: =	-															
2											7					
=	2, 4-Bimethy iphenoi				240						7			7	904	
=	Benzoic Acid													2:	2	
=	his-(2-Chieroethoxy) sethans															
=						=								ž		
2						*								2.02.7	209	
=					7 73									9	91	
2	_	2			15000 E	011				,9	9			70	Š	
2	_									:	<b>:</b>			Ď		
₹.																
2	2-Rethylasphthslane													-		
≉	Hexachiaracyclapentadiene															
3						• •										
<b>#</b>																
2	2-Chloroniphthalene															
못	2-Nitroaning															

30 2-Mitroamiline

	SITE	SITE 0	SITE 0	SITE O	SITE O	SITE O	SITE O	SITE #	SITE R	SITE R	SITE R	SITE R	SITE R	SITE R	BL ANK	PRIVATE	PRIVATE
	SAMPLE MUMBER WELL MUMBER BATE SAMPLED	DC-60-40A EE-23 7-14-87	BC-GH-41 EE-24 3-24-87	BC-6M-41A EE-24 7-14-07	BC-6N-42 8 EE-24 3-24-07	DC-6H-43 EE-25 3-24-07	BC-6H-43A EE-25 7-14-87	DC-GH-44 P-1 3-25-07	BC-GW-45 B-28A 3-25-87	DC-6W-46 P-7 3-25-87	DC-6M-47 B-76A 3-25-87	DC-6W-484 B-26A 3-25-87	DC-6W-49 #-75A 3-25-87	DC-6W-50 P-11 3-25-67	DC-6W:51 +	DC -6w 52 WRIGHT 5-26-87	DC 64-53 SETTLES 3-24-87
1	Phenal									25000 E			\$0000 E				
	bis(2-Chieroethyl)ether									•			• • • • • •				
	2-Ehlorophenol							4.3	9.3	2100	8 1	9.3	14006 E				
4	1,3-Bichlorobenzene																
5	1,4-Bichlorobenzene							8 J		550	4 3	3 )		54 J	l		
4	Denzył Alcohol									750							
7	1,2-Bichlorobenzene									340	i J	1 1	91 J				
	2-Methylphenol																
,	bis(2-Chloroisopropyl) ether																
	4-Hethyiphenol									120 3			6100				
	N-Nitroso-n-Bipropylanine																
12	Hexachloroethane									850							
	Mitrobenzene										33	29	420				•
	Isophorone																
	2-Nitrophenal																
	2,4-Binethvlphenol												160				
	Benzaic Acid									270 J			6900				
	his-12-Chloroethoxy)methame																
	2,4-Dichlorophenol									5500			14000 E				
	1,2.4-Trichlorobenzene																
	Naphthalene						_			87 1							
	4-Chloroaniline						_			75000 E	<b>78</b> 0	540		4100			
	Hexachlorobutadiene																
	4-Chloro-3-methylphenol																
	2-Methylnaphthalene									200							
	Hexachlorocyclopentadzene										•						
	2,4,6-Trichlorophenol									2100			1500				
	2,4,5-Trichlorophenol																
29	2-Chloronaphthaiene																

8

Ground Mater Searvolatiles

Staff   William   Staff   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William   William			LKIVAIK	7417416	3164164	
### SAMPLE SCHIEF  ### SAMPLE 3-24-97 3-24-97 3-24-97  ### Pheasi  ### SAMPLE 3  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  ### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheasi  #### Pheas		AMPLE NUMBER	X-3-3	E-52-35	X-33-34	DC-EN-37 +
MME SAMPLE  Mais and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and the sample and	-	ELL NUMBER	SCHILL	K POHAL D	CLAYTON	
F304464044E=000440-1414040000	_	ATE SAMPLED	3-26-07	3-26-07	3-24-87	1-14-8)
	1	Phenal	1			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	bisi2-Chibroethyi)ether				
	~	2-Chlorophenel				
	•	1.3-Bichlorobenzene				
	•	1,4-Bichlorobenzene			7.	
	•	Benzyl Alcohol				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	1.2-Dichlorobenzone			7 5	
	•	2-Nethylphenol				
-==-	•	bisi2-Chlereisopropyl) ether				
**************************************	=	4-Rethylphenol				
==-~~	Ξ	#-#1117.050-n-Bipropy] selec				
	17	Herachleroethane				
	=	Ritrobeazese				
~~~~~	: <b>≍</b>	I sophor one				
~~~~~~~~~~~~	2	2-Nitroppenol				
	=	2,4-Binethylohenol				
***********	•	Denzosc Acid				
~-=+±+NE	9	bis-(2-Chloroethoxy)methane				
-=-=-	•	2,4-Bichlorophenol				
******	2	1,2,4-Trichlorobenzene				
-14454444	77	Reputhalone				
N = N N N N	22	6-Chloroaniline				
-48444	22	Hexach Icrobutations				
	*	4-Chiore-3-sethylphenol				
*****	2	2-Hethylnaphthalene	:			
	2	Menachlorocyclopentadiene				
	=	2,4,5-frichiprophenol				
	8	2,4,5-Trichlorophenol				
	2	2-Chluronaphthalene				
	ጵ	2-Nitrosmiline				

			r			
29 bm-cely phthalate 30 Benze(b)Fluoranthene 31 Benze(b)Fluoranthene 17 Benze(b)Fluoranthene	22 Fluoranthene 23 Pyrene 23 Buyl Benzyl phthalate 25 3,3'-9ichlorobeazidine 26 BenzelajAnthracene 27 bis[2-ethylhezyl] phthalate		14 4,-Bnitro-2-methylphenol 15 H-Hitrosodiphenylamine 15 H-Gracophenyl-phenylether 16 H-arracophenzene 18 Pentachlorophenol		SAMPLE MAMBER WELL MAMBER BATE SAMPLED  1 Disethyl Phthalate 2 Accomphtylene	3115
			•		DC-6W-17+ 3-17-87	P. A.
	=	9 5			DC-64-18 EE-6108 3-18-87	3118
	•	-	1300 J		DC-GN-19 EE 6107 3-18-87	9 3115
			6300		DC-GM 200 EE-G107 3-18-87	9 3118
	50 ••	10 8	12 J		DC-6W-21 EE-05 3-10-07	9 3115
	E				DC-Gu-22*	X Am
	2 1	2 JB			DC-6M-23 EE-13 3-23-07	1 3118
	5 E	7 83			DC -6N -24 EE -12 3-23-87	3118
	3 100	i 2 JA	<b>6</b>	es Ser	OC 6W 25 EE-6112 3-23-07	1 3118
		•	7400		DC: GN: 26 EE-14 3-23-87	1 3115
	13	12 12	7 J	\$\ \$\	DC-GN 27 EE-15 3-23-87	1 3115
	70 8)	•	£ 04	1 de 6	NC-6W-28 RE-16 3-23-87	1 3115
					DC GW-29 EE-12 3-23-87	1 3115
3 (a)	٠, د د	2 18		<del></del>	DC GH-29 i DC GH 70+ EE-12 3-23-87 3-23-87	BI ANK
_		<b>₽</b>		ቴ Έ	PE 68 31 S-23 67	1 3115
	٥	z		Έ	Dt 64 11 14.8 14.8	3115

32 Benzo(a)Pyrene 33 Indeno(1,2,3-cd)Pyrene 34 Benzo(g,h,i)Perylene 35 Bibenz(a,h)Anthracene

SIIE	SITE &	GITE G	SITE B	DL AMK	SITE H	SITE L	SITE O	SITE O	SIIE D	SIIE O	SITE O	\$11£ 0	SITE O	2116 0	SITE D	8118 0
SAMPLE MUMBER	DC-60-33	DC-60-34	DC-6N-34A	DC-68-35 +	BC-6N-34	DC-6M-37	DC-60-30	DC-GU-38A	OC-60-39	DC-6W-39A	DC-6W-40	DC-6W-40A	DC-6N-41	DC-6W-41A	DC-6N-42 #	DC-6#-43
WELL NUMBER	EE-6106	EE- <b>6</b> 102	EE-6102		EE-6110	EE-6109	EE-21	EE-21	EE - 22	EE-22	EE - 23	EE-23	EE -24	EE-24	EE-24	€€-25
BATE SAMPLED	3-24-07	3-24-07	7-14-07	3-24-97	3-24-87	3-24-87	3-24-87	7-14-07	3-24-87	7-14-07	3-24-87	7-14-07	3-24-07	7-14-87	3-24-87	3 24-67
l Bisethyl Phthalate																
2 Acenaphtylene																
3 3-Mitrosniline																
4 Acenaphthene																
5 2,4-Bimitrophenol																
6 4-Mitrophenal																
7 Bibenzafuran																
8 2,4-Binitrataluene																
9 7,6-Binitrataluene																
10 Brethylphthalate																
11 4-Chimrophonyl-Phenylether																
12 Fluorene																
13 4-Mitreaniline																
14 4,6-Binitro-2-methylphenol																
15 N-Nitrosodiphenylamine																
16 4-Bronophenyl-phenylether																
17 Hezachlorobenzene																
18 Fentachigrophenol			_						23 J	]				•		
19 Phenanthrene			-													
20 Anthracene																
21 Bi-m-butyl phthalate	12 8			6 8.	l	4.1	n						10 8	7 3	10 D	
22 Fluoranthene														, -		
23 Pyrene																
24 Butyl Benzyl phthalate					1											
25 3,3'-Bichlorobenzidine					•	-										
26 Benzola)Anthracene																
27 bis(2-ethylhesyl) phthalate	4 8	3		7 83	1								3 #	1		
20 Chrysene		-			•									-		
29 Bi-n-octyl phthalate	2 9	J		3.00	1								2 6			
30 Benzo(b)Fluoranthene		-			•								4 P	•	11 6	
31 Benzo(k)Fluoranthene																
73 Beauty 10 sees																

35 Dibenzia, h)Anthracene

	SIIE	SIIE 0	SITE R	SITE R	SITE R	SITE R	SITE R	SITE A	SITE R	HLAND	PRIVATE	PRIVATE	PRIVATE	PRIVAIL	PHIVALE	M AMP
	SAMPLE NUMBER WELL NUMBER	BC-6W-43A EE-25	DC-GH-44 P-1	DC-6W-45 D-20A	DC-6W-46 P-7	DC-6M-47 D-26A	DC-64-481 D-26A	BC-6W-49 D-25A	DC-6M-50 F-11	DC 6W-51+	DC-GW-52	DC-6W-53 SETTLES	DC-6W-54 SCHM1DT	DC-BN 55 NcDONALD	DC-6W-5& CLAYTON	DC GW 5
	BATE SAMPLED	7-14-87	3-25-87	3-25-87	3-25-87	3-25-07	3-25-87	3-25-07	3-25-97	3-25-67	3-26-87	3-26-07	3-26-87	3-26-87	3-26-87	7 14 87
	i Binethyl Phihalate															
	2 Acenaphtylene															
	S 3-Mitroaniline															
	1 Acenaphthene															
	5 2,4-Binitrophenol															
	6 4-Hitrophenol															
	7 Bibenzofuran															
+	B 2,4-Binitrotoluene															
	P 2,6-Binitrotoluene															
	B Brethylphthalate															
1	i 4-Chiorophenyl-Phenylether															
1	2 Fluorene															
i	3 4-Mitroaniline															
1	4 4,6-Dinitro-2-methylphenmi															
ı	5 M-Mitrosodiphenylamine															
	6 4-Brosophenyl-phenylether															
	7 Hexachlorobenzene															
·-· 1	Fentachlorophenol															
	7 Phenanthrong															
	0 Anthracene															
	1 Di-n-butyl phthalate		7.3													
	? Fluorantheme															
	3 Pyrene															
	F Butyl Benzyl phthalate															
	5 3,3'-Dichlorobenzidine															
	6 Benzo(a)Anthracene															
	7 bis{2-ethylhexyl) phthalate			4.3		37	4			4 J						
	B Chrysene			٠.		3,	•			٠,						
	9 Bi-n-octyl phthalate			4 3		40	26			5.1	2 J		2 1	ز پ		
	D Denzo(b)Fluoranthene			٠,,		70	. 40				1 3			• ,	ز ه	
	v penzolbjrluoraninene 1 Benzolijfluoranihene															
	1 - Denzo(a)Pyrene 2 - Denzo(a)Pyrene															
	3 Indeno(1,2,3-cd)Pyrene															
5	4 Benzo(g,h,i)ferylene															

. .

•		#	*														
•••	SITE	SIJE O	SIIE 0	SITE 0	SITE 0	SITE O	SITE 0	SITE 0	SITE A	SITE 0	SITE H	SITE H	SIIE H	SITE H	SIJE 6	5116 6	SHIE 6
-	SAMPLE MUMBER WELL MUMBER BATE SAMPLED	BC-64-01 EE-06 3-14-07	BC-6H-02 EE-07 3-14-B7	BC-6N-03 EE-09 3-16-87	DC-6M-04 EE-10 3-14-87	DC-6M-05 EE-17 3-14-87	BC-6M-06 EE-08 3-16-87	BC-6N-07 EE-19 3-14-07	3-17-61 EE-13 OC-EM-081	DC-6N-09 EE-19 3-16-87	DC+6W-10 EE+01 3-17-87	DC-6W-11 EE-02 3-17-87	DC-6W-12 EE-03 3-17-87	BC-6H-13 EE-04 3-17-87	DC 66-14 EE 6101 3-17-67	DC-6M-15 EE-G103 3-17-87	DC 5H 18 EE 61:14 3-11-67
10 10 10 10 11 12 13 14 15	2.4-Dinitrophenol 4-Hitrophenol Bibeniofuran 2.4-Dinitrotoluene 2.4-Dinitrotoluene Biethylphthalate 4-Chlorophenyl-Phenylether Fluorene 4-Hitronniline 4.4-Dinitro-2-aethylphenol H-Nitrosodiphenylanine 4-Brooophenyl-phenylether							3904		446 J	20 J 800	<b>8</b> J 22 J					
11 11	Hexachlorobenzene Pentachlorophenol Phenanthrene					. •	-	24006 E	22000 E	210 '	650 15 J						
21 22 23 24 24	Anthracene Bi-n-butyl phthalate Fluoranthene Pyrene Butyl Benzyl phthalate 3,3'-Bichlorobenzidine	12 B.		5 93	j 8-9.			ŧ		·						2 BJ	
27 26 29 30 31 32 33	Benzola)Anthracene bis(2-ethylhenyi) phthalate Chrysene Bi-n-octyl phthalate Benzolb)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Benzo(q,h,i)Perylene Bibenz(a,h)Anthracene	95	, 1 170	4.1		21	2.1					24 J			32 6 J		24

0314WVS 31V0

839WW 1139

3115

U3QNON 31ANVS

\$7 WOOCTOB-1379
\$2 WOOCTOB-1328
\$4 WOOCTOB-1548
\$2 WOOCTOB-1545
\$5 WOOCTOB-1545

2 Mesha-MC
2 MeshalmC
4 MestalmC
6 MestalmC
5 MestalmC
6 Mestalmo
6 Mestalmo
7 Mestalmo
7 Mestalmo
7 Mestalmo
8 Mestalmo
8 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo
9 Mestalmo

31	VBOCT 08-1551	
50	VUOC100-101P	
ál.	Postdes.col	
81	Chlordine	
i.i	Endrin Letone	
71	Methoxychlor	
51	100100	
11	stating matinachas	
12	## ## ## ## ## ## ## ## ## ## ## ## ##	·
	[[ melfueab3	
	U1.JPU3	

18-91-2

10-R9-30

0 3115

01-33

2-19-93

10-R9-30

0 3115

60-33

2-19-91

9C-09-05

8 3115

LO-33

2-19-83

90-33

10-R9-36

0 3115

2-17-81

\$0-**89**-36

8 3112

41-33

14

10-11-5

2019-33

\$1 M9-30

9 3115

19-11-5

H 3LIS

DU-33

19-11-:

1019-33

9 3115

19-11-5

DC-64-13

H 3115

10-33

2-11-91

11-89-30

H 3115

20-33

(8 /T-S

1 33

01-89-36

N 3115

18-91-2

DC-PR-08

81 - 33

0 3115

2-19-91

# 80-#9-36

61-33

0 3115

2-11-83

10-M9-36

61-33

0 111S

2-17-81

90-R9-36

80-33

8 3115

75

395

_

3P W#00788-73P0 32 W#00788-1328 34 W#00788-1348

32 VEOCTOR-1345 53 VEOCTOR-1325 54 VEOCTOR-1334 55 VEOCTOR-1334 56 VEOCTOR-1334

14 Endosaltan Sultate
15 6,6-001
18 Chlocksher
19 Chlockshe

12 4'4.-900 TO 4'4.-900 TO 4'4.-900 TO 4'4.-900 TO 4'4.-900 TO 4'4.-900 TO 4'4.-900 TO 4'4.-900

ANA 19	1 3115	1 1115	1 3115	1 3115	1 3115	1 3115	1 3115	DI VIII	5 3115	9 3115	9 3115	1.3115.	WY 16.	0 3115	3115
DC 88 30 •		DC-PN-58	DC-68-27	9C-09-30	DC-64-25	DC-6M-24	DC-09-32	9C-6H-35 +	DC-68-21	DC-09-30 0	61-89-36	9C-ER-18	+21-89-30	9C-89-17	N30MIN 314HVS
19-22-5	18-57-5 21-33	2-53-83 EE-19	2-32-81 EE-12	2-52-81 EE-14	2-53-01 EE-elis	2-52-03 <b>8E-1</b> 5	2-52-83 EE-12	1-10-01	2-10-03 EE-02	20-01-5 2019-33	2-10-8) EE-2193	2-10-03 2-10 <del>0</del>	18-11-5	2-11-83 EE-2104	837MVS 31V6 NETT NUMBER
								• •				- •			346-4441A 1***
															2 0614-0HC 2 0614-0HC
															(seshnil) 366-seesd )
															2 Heptachlar

## Ground Mater Pest/PCBs

10 4,4'-DBE
11 Endrin
12 Edosulian II
13 4,4'-DBE
14 Endosulian Sulfate
15 4,4'-DBF
16 Methosychlar
17 Endrin Ketone
18 Chlordane
19 Tosaphene
20 AROCLOR-1221
21 AROCLOR-1222
22 AROCLOR-1232
23 AROCLOR-1242
24 AROCLOR-1244
25 AROCLOR-1254
26 AROCLOR-1254

SITE	\$11E 1	SITE 6	SITE 6	SITE 6	SITE 6	DL ANK	SITE N	SITE L	SITE O	SITE O	SITE O	SIIE O	SITE O	SITE O	SITE O	
SAMPLE HUMBER MELL NUMBER BATE SAMPLED	8C-64-31 EE-20 3-23-87	BC-60-32 EE-11 3-24-87	BC-94-33 EE-6106 3-24-07			9C-6H-35 + 3-24-87	BC-6H-36 EE-6110 3-24-87	9C-6M-37 EE-6109 3-24-87	DC-6M-38 EE-21 3-24-87	BC-6W-38A EE-21 7-14-87	DC-6N-39 EE · 22 3-24-07	DC-GH-39A EE-22 7-14-87	DC-6N-40 EE-23 3-24-87	BC-68-46A EE-23 7-14-87		
i Alpha-BMC 2 Bela-BMC 3 Belta-BMC 4 Gamma-BMC (Lindame) 5 Meptachlor 6 Aldrin 7 Meptachlor Epoxide 8 Edosulfan I 9 Bieldrin			70 C													

▶,

397

•

•

-	-	SITE	SITE 0	SITE O		SITE 0	SITE	SILE A	
	SA.	MPLE NUMBER	DC-6W-41A	DC-60-42 1	BC-60-43	DC-6W-43A	DC-6H-44	DC-64-45	DC-66-46
	WE	LL MUMBER	EE-24	EE-24	EE-25	EE-25	P·L	B-28A	P-7
	M	ITE SAMPLED	7-14-87	3-24-87	3-24-87	7-14-87	3-25-87	3-25-87	3-25-87
	1	Alpha-BIC							
	2	Seta-MC							
		Belta-BHC							
-	4	Gamma-MC (Lindame)							
		Heptachlor							
		Aldrin							
		Heptachlar Epoxide							
	-	Edosultan l							
		Dieldrin							
		1,1'-BBE							
		Endrin							
		Edosultan II							
		4,41-000							
		Endosulfan Sulfate							
		4,41- <b>00</b> T							
		Methacychlar							
		Endria Ketone							
		Chiordane							
		Toxaphene							
		AROCLOR-1016							
		AROCL OR -1221							
		AROCLOR-1232							
	23	AROCLOR-1242							
		AROCLOR-1248							
		AMOCLOR-1254							
	76	A86C) 88-1748							

PRIVATE PRIVATE PRIVATE

DC -6W-53

SETTLES

DC-6N-52

MRIGHT

SITE A SITE A

0-26A 0-26A

8C-6W-47 DC-6W-481 DC-6W-49

SITE R

0-25A

P-II

3-25-87 3-25-87 3-25-87 3-25-87 3-26-87 3-26-87 3-26-87

	SITE	PRIVATE	BLAK
_	AMPLE MUMBER		BC-GH-57 +
¥	IELL NUMBER	CLAYTON	
•	NATE SAMPLED	3-26-07	7-14-07
. 1	Alpha-BHC		-
2	Beta-BHC		
3	Selta-SHC		
4	Samma-BMC (Lindame)		•
5	Heptachtor		
6	Aldria		
	Neptachlor Epoxide		
	Edosulfan i		
	Bieldria		
19	4,4°- <b>10</b> E		
- 11	Endria		
12	Edosulian II		
13	4,4*-900		
14	Endosulfan Sulfate		
15	4,4*-001		
16	Methoxychlor		
17	Endrin Ketone		
10	Chlordane		
19	Toraphene		
20	ARDCLOR-1016		
21	AROCLOR-1221		
. 22	AROCLOR-1232		
23	AROCLOR-1242		
24	AROCLOR-1240		
- 25	ARDCL 08-1254		

									•							
lei	451			12	090									V9\$1	apturAg	ZZ
č+	ŧς	\$2	52	0187	ts.	T£1#	171	241	••	212	<b>II</b>	38	226	\$2	3413	
															mutbensV	50
															aiT	
															outlish	-
															744112	-
															Selenius	
				13500	391	111							M	+7	Mickel	-
177	11														Mercury	
262	2220	1900	1020	8050	106	9920	0092	2990	12500	1740	1040	ZZ\$	0071	1250	asavebety	-
0011	4021		20146	28 8	20013	0.1774	04686	åaac	****		*****	****	4444	444	pear	-
(r. 1 I	1500		14400	104090 5410	28990	41590	39200	29100	11200	TES	20000	12900	24000	9168	Jran Jran	
				951		801									}[*40]	•
				15		13									Chrosius, trivalent	
				# 0(											Eadaium Cadaium	-
				• **											MO 104	
															Derylline	\$
	516								227		320		185	186 11	aut vaf	
			92	0698		51	11	11			100	<b>e</b> t	Z <b>0</b>	17	31881A	-
92 K															Ame t 1 mon y	-
				11800						***					auniaulA	1
(8-(1-5	2-13-8)	2-11-8)	2-1)-8)	2-11-8)	2-11-9)	2-17-8)	2-17-8)	2-11-8)	2-17-83	2-19-8)	2-11-83	2-19-8)	2-19-83	2-11-8)	<b>0314NV5</b> 31V0	ı
1919 33	1019-33	10-33	20-33	ZO- 33	10-33	81-33	61-33	61-33	80-33	41-33	v1-33	60-33	<b>10-33</b>	90-33	836MON 1136	4
\$1-#9-3 <b>6</b>	61-M9-30	DE-PR-12	DC - PM - 75	11-89-30	01-119-30	DC - PM - 04	t 80-49-36	£0-85-36	90-89-36	\$0-#9-JB	10-M3-36	9C-69-03	20-89-3E	10-RS-36	SAMPLE MINDER	j 
9 3115	9 3115	H 3115	N 3112	H 3115	H 311S	0 3115	0 3115	0 3115_	8 31IS	8 1115	8 11 IS		6.3115	0 3115	3115	

Statestant 1916# bauere

SITE	SITE 6	BLANK	SITE L	SITE 6	SITE G	SITE S	<b>DLANK</b>	SITE I	SITE I	SITE 1	SITE 1	SITE I	SITE I	SITE I	BL AWY
SAMPLE MUMBER MELL NUMBER	BC-64-16 EE-6104 3-17-87	9C-6H-17 + 3-17-87	BC-6H-18 EE-G108 3-18-87	DC-6H-19 EE-G107 3-19-87	BC-6M-20 0 EE-G107 3-10-07	BC-6H-21 EE-05 3-18-87	DC-6M-22 + 3-18-97	BC-6N-23 EE-13 3-23-07	DC-GN-24 EE-12 3-23-87	DC-6W-25 EE-6112 3-23-87	DC-6W-26 EE-14 3-23-87	DC-6N-27 EE-15 3-23-87	DC-6W-28 EE-16 3-23-87	DC 6N-29   0 EE 17 3-23-87	00-64-39 +
Alusinus		• • •					4								
Antimony					12					26					
			331	410	580			12			13	12	956		
Beryllium															
				300	312										
	1110		21900	247000	241000			25400	23300	10800	24100	10500	9540	24900	107
															•
	103		1290	7240	6830	284		1520	1550	1650	1260	1270	1750	1580	
				349	320						95				
				9.7	•4										
	24		24			74					25	1,			
	44		44	1710							73	10			
	SAMPLE MUMBER MELL MUMBER BATE SAMPLED  Aluminum Antimony Arsenic Barium Beryllium Boron Cadminum	SAMPLE MUMBER BC-SM-16 MELL MUMBER EE-6104 BATE SAMPLED 3-17-07  Aluminum Antimony Arsenic Barlum Beryllium Boron Cadminum Chromium, trivalent Cobalt Copper Iron 1110 Lead Hanganese 103 Hercury Michel Selenium Silver Thallium Tin Vanadium Zinc 24	SAMPLE MUMBER BC-6M-16 9C-6M-17 * MELL MUMBER EE-6104 BATE SAMPLEB 3-17-87 3-17-87  Aluminum Antimony Arsenic Barlum Beryllium Boron Caddium Chromium, trivalent Cobalt Copper Iron 1110 Lead Hanganese 103 Hercury Mickel Selenium Silver Thallium Tin Vanadium Zinc 24	SAMPLE NUMBER BC-6M-16 9C-6M-17 + BC-6M-18 MELL NUMBER EE-6104 EE-6108 BATE SAMPLEB 3-17-87 3-18-87  Aluminum Antimony Arsenic Barlum 331 Beryllium Boron Cadaium Chromium, trivalent Cobalt Copper Iron 1110 21900 Lead Rangamese 103 1290 Hercury Mickel Selenium Silver Thallium Tin Vanadium Zinc 24 24	SAMPLE MUMBER BC-6M-16 9C-6M-17 * BC-6M-18 BC-6M-19 MELL MUMBER EE-6104 EE-6108 EE-6107 BATE SAMPLED 3-17-87 3-17-87 3-18-87 3-18-87 3-18-87 Aluminum Antimony Arsenic 14 Barlum 331 610 Beryllium Boron Cadmium 27 R Chromium, trivalent 24 Cobalt 28 Copper Irm 1110 21900 247000 Lead Rangamese 103 1290 7240 Hercury Michel 349 Selenium Silver Thallium 1711 Vanadium 93 Ilmc 24 24 1910	SAMPLE MUMBER BC-6M-16 9C-6M-17 + BC-6M-18 BC-6M-19 BC-6M-20 0 MELL MUMBER EE-6104 EE-6108 EE-6107 EE-6107 BATE SAMPLED 3-17-87 3-18-87 3-18-87 3-18-87  Aluminum Antimony Arsenic 14 12 Barlum Beryllium Boron Cadaium Cadaium Cadaium Cobalt Cobalt Copper Irms 1110 21900 247000 241000 Lead Rangamese 103 1280 7240 6830 Mercury Michel 349 328 Selenium Silver Thallium Tin Vanadium P3 94 Iinc 24 24 1910 1820	SAMPLE MUMBER BC-6N-16 DC-6N-17 + BC-6N-18 DC-6N-19 BC-6N-20 B DC-6N-21 MELL MUMBER EE-6104 EE-6108 EE-6107 EE-6107 EE-05 BATE SAMPLED 3-17-87 3-17-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87	SAMPLE MUMBER BC-6M-16 DC-6M-17 + BC-6M-18 BC-6M-19 BC-6M-20 B BC-6M-21 BC-6M-22 + BELL MUMBER EE-6104 EE-6108 EE-6107 EE-65 BATE SAMPLED 3-17-87 3-17-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18	SAMPLE MUMBER BC-6H-16 9C-6H-17 + BC-6H-18 BC-6H-19 BC-6H-20 8 BC-6H-21 BC-6H-22 + BC-6H-23 BC-6H-26 EE-6104 EE-6108 EE-6107 EE-6107 EE-65 EE-13 BATE SAMPLEB 3-17-87 3-17-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87	SAMPLE NUMBER   BC-6N-16   9C-6N-17   BC-6N-18   BC-6N-19   BC-6N-20   BC-6N-21   BC-6N-22   BC-6N-23   BC-6N-24     MELL NUMBER   EE-6104   EE-6108   EE-6107   EE-6107   EE-6107   EE-05   EE-13   EE-17     BATE SAMPLED   3-17-87   3-18-87   3-18-87   3-18-87   3-18-87   3-18-87   3-18-87   3-18-87   3-23-87     Aluninus   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Antinony   Ant	SAMPLE NUMBER BC-68-16 9C-68-17 * BC-68-18 BC-68-19 BC-68-20 8 BC-68-21 BC-68-22 * BC-68-23 BC-68-24 BC-68-25 BCL MMBER EE-6104 EE-6104 EE-6107 EE-6107 EE-65 EE-13 EE-12 EE-6112 BATE SAMPLEB 3-17-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-87 3-18-97 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87 3-23-87	MUNIBER   BC-GN-16   DC-GH-17   BC-GH-18   BC-GH-19   BC-GH-20   BC-GH-21   BC-GH-22   BC-GH-22   BC-GH-23   BC-GH-24   DC-GH-25   BC-GH-25   BC-GH-26   BC-GH-26   BC-GH-26   BC-GH-26   BC-GH-27   BC-GH-27   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28   BC-GH-28	Sample Number   Sc Gau 15   Sc Gau 17 + Sc Gau 18   Sc Gau 17 + Sc Gau 18   Sc Gau 17 + Sc Gau 18   Sc Gau 17 + Sc Gau 18   Sc Gau 17 + Sc Gau 18   Sc Gau 17 + Sc Gau 18   Sc Gau 17 + Sc Gau 18   Sc Gau 17 + Sc Gau 18   Sc Gau 17 + Sc Gau 18   Sc Gau 17 + Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18   Sc Gau 18	Semilar   Bumber   BC-6H-16   BC-6H-17   BC-6H-18   BC-6H-19   BC-6H-19   BC-6H-21   BC-6H-21   BC-6H-23   BC-6H-23   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-25   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-27   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   BC-6H-28   B	SAMPLE MUNDER BC-6H-16 9C-6H-17 • BC-6H-18 BC-6H-19 BC-6H-20 8 BC-6H-21 BC-6H-22 • BC-6H-23 BC-6H-25 BC-6H-25 BC-6H-25 BC-6H-27 BC-6H-28 92 6H-29 1 BC-104 EE-6104 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-6107 EE-

*0

•

•

•

SITE	SITE I	SISE 6	S11E 6	siie s	SITE 6	N ANK	SITE N	SITE L	SITE O	SITE O	SIIE O	SITE O	SITE O	8116 0	SITE O	\$118 0
SAMPLE MUMBER	DC-6#-31	DC-64-32	DC-6N-33	DC-6N-34	BC-GH-34A	DC-EN-35 +	DC-60-34	BC-6N-37	DC-68-38	DC-6N-38A	DC -6W-39	BC -6N-39A	DC-6#-40	DC-6M-40A	DC -6W-41	DC-60-41A
WELL NUMBER	EE - 20	EE-11	EE-6104	EE-6102	EE-6102		EE-110	EE-6109	€E - 21	EE - 21	EE - 22	EE-22	£€-23	EE - 23	EE-24	EE - 24
DATE SAMPLED	3-23-07	3-24-87	3-24-87	3-24-87	7-14-87	3-24-07	3-24-07	3-24-07	3-24-07	7-14-87	3-24-87	7-14-87	3-24-97	7-14-87	3-24-87	7-14-67
1 Alwainus		85								260						
2 Antimony																
3 Arsonic		179	34	27 48				14000	16		123	123	25	17	10	13
4 Darius			192	46	(51)		173		159	[35]	534	500	[161]	[152]	[170]	204
5 Beryllius						•										
á Boren																
7 Cadesus								32			8	11				
8 Chranium, trivalent			41													
9 Cobali					[10]			84								
10 Copper																
il iron	124	43804	47500	3850	2840	111	2160	523000	20400	15900	147000	171000	19600	16800	36460	29200
12 Lead										3270		4350				
13 Hanganese		2290	3140	1440	1510		274	7640	4340		5460		1270	1330	4110	1520
14 Hercury						·										
15 Nickel			37	72			111									
16 Selenium																
17 Silver																
10 Thallium																
19 Tin																
26 Vanadium								159			42	55			304	
21 linc		129	58	14	31	10	53	2210	41	57	101	40	95	[15]	23	24
22 Cyanade		26							20							

B

•

•

• .

	SITE	SITE 0	SITE 0	SITE O	SITE #	SITE R	SITE #	- SITE R	SITE R	SITE R	SITE R	BLANK	PRIVATE	PRIVATE	PRIVATE	PRIVATE	PRIVATE	PL ANY
	SAMPLE NUMBER	DC-60-42 I	DC-6W-43	DC-6W-43A	DC-60-44	DC-6W-45	DC-6W-44	DC-64-47	DC-60-48	DC-60-49	DC-68-50	DC-6W-51+	DE-GM-52	D£-6W-53	DE-GW-54	DC-6W-55	DC 64 56	DC 6# 5
	WELL MUMBER	EE-24	EE - 25	EE-25	P-1	D-28A	P-7	9-26A	9-26A	B-25A	P-11		WRIGHT	SETTLES	SCHNIDT	Mc DONAL D	ELAYTON	
	BATE SAMPLED	3-24-87	3-24-87	7-14-87	3-25-87	3-25-87	3-25-07	3-25-87	3-25-87	3-25-07	3-25-07	3-25-87	3-26-87	3-26-87	3-26-87	3 26:07	1.76-87	7 14 87
	1 Aluminum			• • •														
	2 Antimony																	
	3 Arsenic	23			34	41		48	45		35				11	26		
	4 Parius	[184]	141	[92]	440	(123)	(27)	[194]	201		[160]		[73]	[87]	292	[117]	100	
	5 Beryliium																	
	6 Boron																	
	7 Cadeius																	
	8 Chromswo, trivalent	l .																
	9 Cobalt						120											
	O Capper													[10]	115			
	1 Iran	24400	393û	5340	10900	20800	15500	24900	27500		11800		2990	4666	21600	10000	17400	(0)
1	2 Lead											[31]		12 R	18 A			
	3 Manganese	4300	5200	1320	2190	6840	11200	2220	3570		2640		1060	663	1660	257	1950	
	4 Hercury														0.2			
	5 Nackel						{10}											
	4 Selenius																	
	7 Silver																	
	8 Thallium																	
	7 Tin																	
	* Vanadium						(18)											
	l line	34	26	24	45 R	24 R	102 R	41 R	62 R		39 R	[16]	4140 R	2000 R	3/1 K	1350 R		
1	2 Cvanide							-			14							

STRE NEUL HUMBER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER NEUL MANNER N Ground Hater Inorganics

I Aluminum

2 Antonny

3 Arence

4 Bartum

5 Beryllium

6 Boron

7 Cadelum

7 Cabalt

9 Cabalt

10 Capper

11 Iron

12 Lead

13 Rangamese

14 Referry

15 Michel

16 Selenium

17 Selenium

17 Selenium

18 Selenium

19 Tin

20 Vanadium

21 Lanc

22 Cyanide

	5116	SITE #	811E M	SITE #	ų-S)	<b>9</b> -S)	<b>(-S)</b>	J- <b>\$</b> J	J-SJ	0-53	(-S)		V-SJ	<b>∀-</b> \$3
	SAMPLE NUMBER BATE	96-54-01 + 11-5-86	BC-58-02 11-5-64	BC-58-03 11-5-86	BC-5N-64 11-5-86	DC-58-05 11-5-84	DC-5H-04-8	DC-SH-07 11-5-86	DC-SN-08 11-5-86	DC-58-09 11 5-86	98-5-11 01-8-20	DC-5W-11 +	DC-5W-12 11-6-86	DC-5W-13 11-6-36
-	[hloromethane		ı											
1	2 Bromomethane 3 Vinyl Chloride													
_	t Chloroethane		i											
٠	S Methylene Chloride	- :	2 .	3;		<b>2</b> .		3 .			9 (	. <b></b>	2	-
	b Acetone 7 Cyshan Brassleyda	2	١	•			=	=======================================	13.	• =	<b>9</b> II	17.0	æ Æ	•
	1 1,1-Bichloroethene		ŀ	:			i							
_	1,1-Dichloroethane													~
2			ı											
= :		2										53	•	~
2 :														
2 3	1 (- Delamone (men.)												;	,
= =	_					•							7	<b>;</b> :
: =														=
=	_													
=														
≘ :	_	4-												
₽;	_												•	<b>-</b>
۶ ۶	Bibrobochioromethane	-												
: ::	_												•	
.≍	_												3	
≈														
*	_													
≈ :	-												-	
2 2	•													
ξ.														
3 =	J jji,i,i-letracmioroetname I Inluaca													
: 2	_												-	
==	_													
Ξ														
2	5 Total Sylenes												7 7	

	SITE	DL ANK	SITE N	SITE M	CS-B	CS-D	CS-b	cs-c	CS-C	CS-D	CS · D	PL ANK	CS-A	CS-A
	SAMPLE MUMBER	DC-SW-01 +	DC-SN-02	BC-SH-03	BC - SW - 04	DC-SM-05	DC-SN-04 8	BC-SN-07	DC - \$4-08	DC -SW- (19	DC - SW- 10	DC-SW-11 +	DC-SM-12 +	DC SM-13
	DATE	11-5-04	11-5-86	11-5-86	11-5-06	11-5-86	11-5-86	11-5-86	11-5-86	11-5-86	11-5-86	11-6-85	11 6-86	11-6-86
ı	Phenol													
	bis(2-Chloroethyl)ether													
3	2-Chlorophenoi													
4	1,3-Bichlorobenzene													
5	1,4-Bichiorobenzene	 												
٠	Benzyi Alcohol													
7	1,2-Bichlorobenzene													
8	2-Nethylphenal													
9														
	4-He thy I phena i													
	N-Hitroso-n-Dipropylanine													
12	Hexachloroethame													
	Hitrobenzene													
	Esophorone					•								
	2-Natrophenol													
	2,4-Bimethylphenol													
	Benzoic Acid													
	his-(2-Chioroethoxy)methane													
	2,4-Bicklorophenal													
	1,2,4-Trichlarobenzene													
	Naphthalene													
	4-Chloroaniline												2 1	
	Heracklorobuladiene													
	4-Chloro-3-methylphenol													
	2-Methylnaphthalene	-	_											
	Hexachlorocyclopentadiene													
	2,4,6-Trichlorophenal													
	2,4,5-Trichlorophenol													
	2-Ehloronaphthalene													
30	2-Nitroaniline				9 .	J								

Surface Mater Seawolatiles

3116	N AM	N 3115		<b>1</b> ·S)	<b>1</b> -53	<b>€</b> :5	J- <b>\$</b> J	J- <b>S</b> J	(2- <b>9</b> )	<b>Q</b> -S3	DI AME	W-53	ES-A
SAMPLE NUMBER BATE	BC-58-01 + 11-5-84	DC-58-02 11-5-06	DC-5M-03 11-5-86	DC-5H-04	DC-54-05 11-5-86	BC-516-06-1	0C-58-07 11-5-86	DC-58-08	DC-58-09	DC-5M-10 11-5-85	0C-SM-11 + 11-6-86	DC-5W-12 11-6-86	DC-54-13 11-6-8a
Dimethyl Pathalale													
2 Acenaphtylene	ı												
3 3-Witrosmiline													
4 Aconsphibone	1												
5 2,4-Binitrophenol	į												
6 4-Nitrophenoi													
7 Dibenzofuran													
# 7,4-Binitratolume	!												
9 2,6-Binitrateluene													
0 Biethylphthalate							-	_					
1 4-Chloraphenyl-Phenylether													
2 Fluorene						٠							
3 4-Mitroaniline													
4 4,6-Binitro-2-sethylphenol													
5 M-Mitroscdiphenylanine													
b 4-brosophenyl-phenylether												٠	
* Herachlorobenzene													
Pentachioruphenol													
Phenanthrese	:					,						-	
	12 1	77 78	25 1	=======================================	2 .	1 1	61	3 61	9 61	20 %	17 6	5 2.	11
22 Pluorialbene													
23 fyrene 24 Autol Ampol shibbolota													
												12 3	
_					•				•	•			
2) his(2-ethylbenyl) phihalate									-			,	•
28 Chrysene												•	
_		7		_						-		12	-
										•		3	-
31 Denzo(k)Fluoranthene													
_													
34 Denze(g,h,s)Perylene													
C BIDGRILL ALMONIA CORP.													

8		PL ANK	SITE #	SITE N	CS-B	CS-B	CS-D	CS-C	CS-C	CS-0	CS-D	BL AND.	CS-A	CS-A
S	AMPLE MUMBER	BC-SM-01 +	BC-SM-02	BC-SW-03	DC-SM-04	BC-SN-05	DC-SH-06 1	DC-SM-67	BC-SN-09	DC-SW-09	DC-SW-10	DC - SW - 11 +	DC-SM-12	DC-\$M-13
•	ATE	11-5-86	11-5-86	11-5-84	11-5-86	11-5-86	11-5-84	11-5-66	11-5-84	11-5-86	11-5-86	11 6-86	11-6-86	11-6-86
1	Alpha-DHC													
2	Beta-DHC													
3	Belta-MC													
4	Gamma-BMC (Lindone)		_											
5	Heptachior													
6	Aldria													
7	Heptachlor Epozide					_								
	Edosultan i													
	Bieldrin													
	4,4"- <b>96</b> E													
	Endrin													
	Edosulfan II													
	4,4*-000													
	Endosulfan Sulfate													
	4,4*-001													
	Rethoxychlor													
17	Endrin Fetone													
18	Chlordane													
19	Toxaphene													
20	AROCLOR-1016													
21	AROCLOR-1221													
22	AROCL OR - 1232													
23	AROCLOR-1242													
24	AROCLOR-1240													
25	AROCLOR-1254													
26	ARDCLOR-1260				3.4	34	44							

	SITE	<b>BL ANK</b>	BITE N	SITE H	CS-8	CS-B	CS-D	CS-C	CS-C	CS-D	CS-B	EL AME	CS-A	ES-A
	SAMPLE MUMBER BATE	BC-SM-01 + 11-5-86	8C-SH-02 11-5-86	8C-SH-03 11-3-86	BC-SM-04 11-5-06	DC-SM-05 11-5-86	BC-SN-06 6 11-5-06	BC-SH-67 11-5-86	BC-60-00 11-5-04	BC-SW-09 11-5-86	DC-SM-10 11-5-86	<b>0</b> C-SW-11 + 11-6-0ĕ	DC-SM-12 11-6-86	DC-SN-13 11-6-86
1	Aluainua		.44		1090	204	7080		767	5000	1190	323	354	294
2	Antimony		٠				•						115	
3	Arsenic						31							
4	Paraua		200				7130			274				
5	Beryllium													
	Boron													
7	Cadesus						25			6.1			75	23
	Chronium, trivalent		-11				25 99			12			91	45
	Cobalt													
	Соррет		51	44	640	239	17900	226	84	619	57		7030	2410
11		255	937	354	1510	495	24500	528	2790	1470	1570		2040	724
12			5.4		17	17	1300	710	34	39	36		3060	76
	Hanganese		17	95	198	66	222		234	196	28		48	252
	Hercury			• • • • • • • • • • • • • • • • • • • •	1.4		,=== -	1.1	0.2	0.26	••		0.59	0.2
	Hichel		46		-,-		1500	83	***	189			2600	667
	Selenium		**					•		,			2000	••/
	Silver												16	
	Thailsum													
19							40		<b>4</b> u				499	
	Vanadius			-			•••		40				***	
			184	73	464	302	10300	\$37	247	1090	185		1450	400
	Zinc		194	73	404	202	10300	331	247	1040	193		1430	480
-u	Cyanide													

U,

•

			32 Chierobeazene	10 1 7 7 Tata Carlot Carlot						avedoudospana, z'i ar	IN TINTI ACCIDITE	_	19 1,1,1-Irichioroethane			10 trans-1,2-Bichloroethene	7 1,1-Bithlergethane	0 i,1-Dichloraethene	7 Carbon Disulfide	6 Acetone	3 Nethylene Chloride	4 Chleroethane	3 Vinyl Chloride	2 Broadethone	1 Chiprosethane		BATE SANFLED	SAFE BEFIN	PARKE STREET		3116
														21000					,	15000	11000						11-5-86	0-6*	BC-SB-13 #		CS-1
996	2000	2/98	=		220 J		e .							310					•		2700	i			i	١	11-5-86	2. <del>.</del> .	N-83-14		-93
														11000					1000	100	7900 6					;	11-5-84	0	SI-12-34		SIE
														1000					# 001c	A obes							11-5-84	•	DC - 50 - 14		3115
													L JONE	1					3600	840ú B						11.7.80			F. C. 17	3116	?
													14000						€£ 001₽	12000 8						11-5-11	0-6	1 11-ft-14	,	13-1	}.
				52000 B									14000						10000 T	13000 p						11-5-86	0-4-	61-65-36		1-53	
													10000						100	14060 6						11-5-66	1.52.	DC-50-20		[-S3	
												;	1000					9400	1400	1966					;	11-5-86	ý- <b>-</b>	DC-SD-21		J-\$J	
				12mi J									14606					8 00,66	6 Anger	,						11.5.94	~ :	DC - SD - 22		1-53	
												£ 00077	77AAA B					1 9006 1	27000 6	:					94.0.11		11-4.	DC - SA - 23		L2-L	
												12000 8	12/24					7300	17000 6						11-5-86		UC 50 -24		13.1	70.7	
												21000 P						18/00/ 1	23osa 🛊						11 - 5 - 66	٠.	DC-SD-25		6-57	;	
												4 00091							19000 4						11:5-66	1.5 -2	DC-50-26		0-53		
					:							5000						1000 F						ļ	11 5-86	÷	DC - SD - 2		(S-D		

Sediment Volatiles

.

-	3118	<del>-</del> 53	¥	P. AK	V-5.)	¥-5.1	¥-93	V-S)	V-S)
;	SAMPLE NUMBER	NC-88-38	DC-59-29 •	9C-20-31 +	+ BC-S9-32	DC-50-33 I	DC-80-34 1	PC-SB-35	DC-50-36
	SAMPLE BEPTH	1.5'-7'			1.5 . 2		0	.9-0	1.53.
	DATE SAWLED	11-5-86	711-5-86	11-6-86	10-9-11	98-9-11	11-6-86	11-6-86	11-6-66
_	Chlorosethane		ŀ						
~	br nease than								
-	Vinyl Chieride		,						
-	Chloroethane		1						
•	Methylene Chloride	20000	15000	14000	14000	6 300 B	8 0099	7 0088	7200 8
•	Acetone	7400	6200 B	4700	11300	12000	\$300 B	23000	6 00 <b>87</b>
~	Carbon Disulfide								
-	1,1-Bichlornethene								
•	1,1-Bichloreethane								
•	trans-1,2-Bichloroethese				•				
_	Chlorofore								
-	1-2-Bichloraethane								
~	2-butanone (MEK)	15000	7 0001	2400	12000	11000	9200 B		12000 8
-	1.1.1-Irichloreethase								
•	Carbon Tetrachloride							•	
	Vinyl Acetate								
=	Propodich torconthing								
	1,2-Bichlorspropene								
-	trans-1,3-Dichloropropene								
2	Trichlorsethens								
=	Dibraschlorasethane								
22	i, i, 2-Trichloroethane								
::	Denzene								
₹.	cis-1,3-Bichlorapropene								
2	2-Chloroethyl Vanyl Ether		•				:		
•	Breasfore								
2	4-Hethyl-2-pentanone								
•	2-Henesiane						930 36		
2	Jetrachloroethene								
2	1,1,2,2-Tetrachloroethane								
_	Toluene								
~	Chlorobenzene								7 0 <b>0</b> 7
=	_								
z									
~	Jotal Bylenes								

4/3

#### Sediment Senivolatiles

	SITE	(S-0	CS-B	SITE M	BIIE N	SITE M	CS-8	CS-B	CS-B	CS-C	cs-c	CS-C	CS-C	CS-0	CS-D
	SAMPLE MUMBER SAMPLE BEPTH BATE SAMPLEB	0-6° 11-5-86	DC-SD-14 21-31 11-5-84	0C-SB-15 0-6" 11-5-86	BC-SB-14 0-6* 11-5-86	0C-50-17 0-6" 11-5-04	0C-68-10 0 0-6* 11-5-86		DC-58-20 1.51-21 11-5-86	DC-SD-21 0-6* 11-5-86	DC-S0-22 2 -2,5 11-5-06	DC-SD-23 U-6* 11-5-86	0C-S0-24 2'-2.5 11-5-86	0C+50-25 -0-6* 11-5-66	90-58-26 1.5-2 11-5-86
ı		-										5 <b>8</b> 0 J	81 J		
3	bis(2-Chioroethyl)ether														
3	2-Chlorophenal	_													
5	1,3-Bichterobenzene 1,4-Bichterobenzene		220000					130 4	,		t 011 t upa				
_	Senzyl Alcohol		220000					130 1	,		940 7				
į	1,2-Dichlorobenzene		17000 J					-							
	2-Hethylphonal		•••••												
,	bis(2-Chloroisopropyl) ether														
10	4-Methylphenol														
11	N-Natroso-n-Bapropylanane														
12	Hexachloroethane														
13	Hitrobenzene	•		•											
14	[sopherane					•									
	2-Nitropheno)														
	2,4-Bimethylphenol														
	Benzasc Acid														
	bis-(2-Chioroethoxy)sethane														
	2,4-Bicklaraphenal														
	1,2,4-Trichlorobenzene	•••	5400 J					390 1			260 J				
	Naphthalene 4-Chiproanalane	400 J	9500 J				190 1	120	ľ		230 1	160 J			
	Herachiorobutadiene														
	4-Chloro-3-methylphenul														
	2-Nethylnaphthalone		8400 J								100 J				
	Hexachlorocyclopentadiene										100 3				
	2,4,6-Truchlorophenol									•					
	2,4,5-Tricklorophenol														
	2-Chloronaphthálene														
	2-Mitrosniline														

14.

, •

**)**;

• •

# Sediment Semivolatiles

			CS-D	DL AMK	PL ANK	CS-A	CS-A	CS-A	CS-A	CS-A
	SAMPLE NUMBER SAMPLE DEPTH DATE SAMPLED	DC-SD-22- 0-6* 11-5-86	DC-SD-28 1.5'-2' 11-5-84	DC-SD-29 +	DC-SD-31	• 9C-S0-32 1.51-21 11-6-86	DC-SB-33 # 0-6" 11-6-86	BC-SB-34 # G-6* 11-6-86	BC-SD-35 0-6" 11-6-86	DC-50-36 1.5'-2' 11-6-86
j	Phenol	-								
2	bis(2-Chloroethyl)ether									
3						140 J				550 J
•	1,3-Bichlorobenzene 1.4-Bichlorobenzene					1000		410 J	130 J	2900
3						1000		110 3	120.2	2400
7	1,2-Bichlorobenzene		*			480	270 J			
	2-Hethylphenol									
,	bis(2-Chloreisopropyl) ether									
10	* **									
11	N-Watroso-n-Dipropylanine									
12	* **									
13	Mitrobenzene									
14	isaphorone									
15	2-Nitrophenol									
14	2,4-Braethyiptenol									
17	Benzoic Acid									
18	bis-(2-Chioroethoxy)methane									
19	2,4-Bichlorophenol		•							
20	1,2,4-Trichlorobenzene					580			90 J	1500 J
21	Haphthaiene								130 1	
22	4-Chloroansisse								1000 J	
23										
. 24										
25	2-Methylnaphthalene							450 J		
26										
27										
	2,4,5-Trichlorophenol								,	
29										
30	2-Mitroaniline									

415

; •

_|:

# Sediment Semirolatiles

<b>FIR</b>	(b-)	£6 0	SITE M	SIII M	BILE N	CB #	CR- D	(5 k	€5 E	נגנ	LS (			
SAMPLE NUMBER SAMPLE DEPTH BATE SAMPLED	0-6° 11-5-86	9C-58-14 21-31 11-5-86	DC-SD-15 0-6* 11-5-86	BC-98-14 0-4* 11-5-86	DC-58-17 0-4* 11-5-84	DC-58-18 4 0-6* 11-5-86	BC-SB-19 0-6* 11-5-86	BC-SD-20 1.5'-2' 11-5-86	DC-SD-21 0-6* 11-5-86	DC -SD-22 2'-2.5'	DC-SB-23 U-6*	DC SD-24 2 -2.5	DC SD-25	CS D DC SD 26
I Dinethyl Phthalate								11 2 00	11-2-89	11-5-66	11-5-86	11-5-06	11-5-06	11-5-86
2 Acenaphtylene														
3 3-Mitrosniline														
4 Acenaphthese 5 2,4-Binitrophenol														
ó 4-Kitrophenoj										130 J				
7 Bibenzeturan		2400 J												
0 2,4-Binitrotolume														
7 2,6-Biaitrotoluese														
3 Biethylphthalate														
4-Chlorophenyl-Phenylether														
Fluorene		3900 3												
4-Mitroansline										37a J				
4,6-Binitro-2-methylphenol					•					370 2				
N-Hitrosodiphenylanine 4-Brosophenyl-phenylether														
Hexachiorobenzane Hexachiorobenzane														
Pentachiorophenoi							1900							
Phenanthrene		·					940 J	210 J						
Anthracene		15000 J					770 3	370 J						
Dr-n-butyl phthalate			*** *						280 J	910 J		220 J		
Fluoranthene		11000 J	580 8	570 BJ	540 J	300 J		280 j		500 J				
Pyrene		13000 1						100 5		44		120 3	130 1	79
butyl benzyl phthalate						1400 J		91 J	440 J	4 <b>5</b> 00		370 J		130 1
3,3'-Bichlorobenzidine						830 J				4300		290 J		120 J
Benzo(a)Anthracene												-		
bis(2-ethylhexyl) phthalate Chrysene	9900 J	9500 J		540 』	150 J	430 J 5300			380 J	3360	650 J	230 J		
Di-n-octyl phthalate				•	1.50	1200 J		95 J	740 J		L 044	230 1		
Benzo(b)Fluoranthene		2600 3	120 J	270 J		940 J		180 J	550 1	4406	1000	360 J		72 J
Benza(1) Fluor anthene	720 J	3400 J				,,,,	2400	96 J		19ù J		7.0 U		83 J
Benza(a)Pyrene	1100 J	1800 ]				1500 J	4700	410 J		7500	2060	1990		200 ]
Indens(1,2,3-cd)Pyrene		1900 1				490 J	310 J	95 J	920 480 J	AéO J				200 1
Benza(g,h,ı)Perylene						850 J	1400 J	209 J	590 J	4500	940	350 J		86 J
Bibenz(a,h)Anthracene							390 3		3177 4	4300 1500 J	1700	530 J		100 J
						1400 J	1800	210 J	550 J	1300 J (000	640 J 1700	110 J		<del>-</del>
		<b>-</b> .								******	1700	47ú J		91 ]

<b>∀</b> -53	¥-53	V-\$3	V-90	V-53	Pf vnx	BF VMK	4-50	J- 1-53	3119	3
PC-2D-29	PC-20-32	DC-20-24 t	DC-20-22 #	9C-29-25	• 12-05-30	PC-29-38 +	DC-20-50	12-03-36	USQUATE 31-JUV	<b>;</b> 
112.55	.9-0	.9-0	.9-0	.251			1125.	.9-0	HI430 3JANY	
98-9-11	98-9-11	98-9-11	99-9-11	98-9-11	98-9-11	98-S-11	98-5-11	98-Ç-11	4318WVS 31W	1
				-				***	Dinethyl Phthalate	1
									Acensphly lene	3
									Sailseentike.	
L 011									anad faqua sh	•
									2,4-Binitrophenol	ç
									4-Mitrophenoi	7
									As suface and all	Ĺ
									2,4-Binstrolojuene	
									S.b. Brailtoteluene	6
									Brethylphthalate	10
									4-Chiorophenyi-Phenyiether	- 11
							•		f Juorene	15
									aniliasovii#-b	12
									fonsAgiyAlsa-S-ovliaid-à,b	H
				750 1					M-Mittosodyphenylanne	61
									4-Brosopheny)-pheny)ether	91
	1100 1			110 1					anas nado vo i d sa sahi	U
	L 608								Pentachlor <del>ophe</del> nol	81
				T 061					Phenanihrene	18
									An i hr ac mee	50
690									Dz-n-patk) bhthaiste	12
	f 009								Fluorsathene	
1400 1	C 0001			f 011					Pyrene	32
		5400 1		250	-				butyl Benzyl phthalate	34
									2,5 -Bichlarobeazidine	SZ
		*****							Benzo(a) An the acone	92
	120 1	3400	3300 1	280 T					projectify (typellyles)	u
	f 0001	1 011		f 011					Chrysene	
11000	0018	5400	450 1	200 1				t 0(1	Dr-n-octyl phtholote	
t coot	1 1097	220 1		•				r 00\$	Benzo(b) Fluor anthene	
1 443	1 424							1 092	Pease(t)Fluoranthene	12
r ets	C 026							210 1 540 1	Senzo(a)Pyrene	22 25
									Indens(1,2,3-cd)Pyrese	
	• • • •								Benza(g,t,t,t)erylene	24

•

•

SITE	CS-8	⊆ _{CS-0}	elle n	BELE N	SITE W	CS-D	CS-D	CS-B	cs-c	CS-C	CS-C	CS-C	CS-D	CS-D	CS-0 :
SAMPLE MUMBER	DC-SD-13 1	DC-SD-14	BC-SB-15	DC-SD-16	9C-S9-17	DC-53-18 8	DC-50-19	DC-SD-20	DC-SD-21	DC -SD -22	DC-SD-23	DC-SD-24	BC-SD-25	DC -SD-26	DC -SD-27
SAMPLE BEPTH	0-6"	2'-3'	0-6"	9-9.	0-6*	• •	0-7.	1.51-21	0-9.	21-2.51	0-6"	2"-2.5"	0-6"	1.51-21	0.6"
BATE SAMPLED	11-5-86	11-5-84	11-5-84	11-5-84	11-5-86	11-5-86	11-5-86	11-5-86	11-5-86	11-5-66	11-5-06	11 - 5 - 06	11-5-66	11-5-86	11-5-86
1 Alpha-BHC															
2 Beta-BHC															
3 Delta-DHC															
4 Gamma-MC (Lindone)															
5 Heptachior															
6 Aldrin		_													
7 Neptachler Epoxide															•
B Edosulfan i															
7 Dieldrin															
10 4,4"-BBE															
11 Endrin													580		
17 Edosultan II															
13 4,4"- <b>368</b>															
14 Endosulfan Sulfate															
15 4,4"- <b>887</b>															
lé Methosychlor															
E7 Endrin Ketone															
18 Chiordane															
19 Taxaphene															
20 AROCLOR-1016															
21 AROCL 0R-1221															
22 ARGCLOR-1232															•
23 AROCLOR-1242				20000											
24 AROCLUR-1248		480000 C	440	9830	3200					8700					
25 ARBCLOR-1254			470		4204		141000 C	14000 0	•	9300	11000	1600 J			7500
26 ARGCLOR-1260	10300 J	44000 C			2700 J	7700	54000 J			5000 J	7800 3				4500

41/8

 $\infty$ 

•

### Sediment Pest/PCBs

S	ITE	CS-D	BL AM.	BL ANK	CS-A	CS-A	CS-A	CS-A	CS-A
<b>s</b>	AMPLE NUMBER	DC-50-20	DC-SD-29 +	8C-SD-31 +	DC-SD-32	DC-SD-33 I	BC-SD-34 #	DC-SD-35	DC-SD-34
S	AMPLE DEPTH	1.5'-2'			1.5 -2	0.4"	0- <b>4</b> *	0-4*	1.5"-2"
•	ATE SAMPLED	11-5-04	11-5-86	11-6-96	11-4-94	11-6-86	11-6-86	11-6-86	11-6-86
ı	Alpha-BHC								
3	Seta-RHC								
3	Deita-DHC					·			
4	Gamma-BHC (Lindane)								
5	Heptachlor								
6	Aldrin		_						
,	Heptachlor Epoxide								
-	Edosultan I								
,	Bieldria								
10	4,41-DDE								
11	Endrin								
12	Edosulfan II								
	4,4 -000								
14	Endosulfan Sulfate								
	4,41-001								
16	Methoxychlor								
17	Endria Ketone								
16	Chlordane		-						
17	Tozaphene								
20	AROCL OR -1014								
21 22	AROCL OR - 1221 AROCL OG - 1232								
22 23	AROCLOR-1232								
25 24	AROCLOR-1248				71000 0	3000			
		1800			21000 E	7900	11000	71000 0	****
25	AROCLOR-1254 Aroclor-1260	1900			13000 J(	2000 J	10600 2200 J	71000 C	38000

£1

lnorganic	14001905
11.26.8 Mal	tana iba2

													5.0		aptueig	22
7	0659	1010	0217	0889	12900	1230	0177	11000	2410	1010	218	870	9577	2210	2012	12
	25	15	77	1ï	22	25	52	81	34	61		61	U	52	AuthensV	50
								91			32		38	23	utj	61
										_					antitedi	61
								12	<b>♦</b> t				11	01	287 [15	£1
			2.5					Z	•				119	5.3	entualas	91
	88 \$99	17 1/1	18 844	1540 KB	8:8 41	119 81	18 478	1230 MB	20	10 602	220 BB	227 WB	EM SOS ME	18 75	Mickel	Çİ
0	98.u	ŗ	18.5	\$ <b>4</b> .1	\$6.0	17.0	48.0	89°T	6.0	n	96°U	\$1.0	1:3	21.0	Mercury	• •
	513	160	121	191	96	U	91	85	310	128	16	100	122	£61	42 ans park	13
	691	911	199	\$16	262	(9)	220	0791	462	14	57	92	421	822	peag	15
15	00794	55800	0040%	22890	18000	00181	31200	28500	17200	14400	3 <b>P(</b> (())	11100	13200	90991	ag 1	
Ţ	1 0191	1 615	5440 8	\$ 6959	1 0165	1 085	1 0172	12200 8	1 0198	1 08(1	1330 1	1 (7)	1 4067	1 01(8	-	
	15	ç	1.2	4.4	01	2.1	4.4	II	•	\$	£. (	ľľ	5.4	4.4	116403	
	8+	33	87	95	09	19	112	811	66	22	£\$	12	122			-
	20	15	20	ll	<b>\$</b> £	£1	5.0	62	<b>9</b> 2	8	11	2.1	25	22	-	-
															•	
			2											4	** *	-
															_	-
'	1 8.1	3.2.8	A 02	8 77	9.6	8 1.7	9 71	12	B 71	8 71	# 61	4 7 1	4 00	4 41	•	-
		AC 111	00077	4610	0024	00411	88471	0011	1100	A167	0047	0000	0200	0004		
•	VV\$21	OSCII	00451	17570	01.91	00761	VV6C I	0219			0.70		<u>***</u> ,	0001	• ••	•
- <b>5-1</b> 1	98-5-11	98-5-11	98-5-11	98-5-11	98-5-11	98-5-11	98-S-11	98-5-11	98-S-11	11-2-89	78-5-11	78-5-57	<b>98-</b> 5-11	98-G-11	6314WVS 31V	•
9-0	2- 51	.9-0	3, -5.2.	.9-0	5.52	•9-0	1-25.	<b>.9</b> -0	.9-0	.9-0	.9-0	.9-0	<b>5.</b> -2.	.9-0	HT930 3J9MA	5
05-20		90-20-32	PC-05-30	PC-2D-33	22-05-36	12-05-30	9C-29-30	61-05-00	1 01-03-30	£1-65-30	71-05-30	\$1-85-36	<b>11-05-30</b>	PC-29-12 6	NAPLE MUNDER	5
d-53	9-53	0-53	J-53	3-93	3-53	3-53	<b>q-5</b> 3	1-53	<b>6</b> -53	W 3115	¥ 3115	W 3115	<b>1-5</b> 3	<b>(-53</b>	3(1	5
1111111	0 1 1 9 9	25  9	21   25   25   25   25   25   25   25	27 21 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27	31   27   25   25   25   27   27   27   27	25   27   27   25   25   25   25   25	11	\$2   \$2   \$3   \$4   \$2   \$2   \$3   \$2   \$3   \$2   \$3   \$3	10   10   10   10   10   10   10   10	14   17   18   18   18   18   18   18   18	14   15   15   15   15   15   15   15	Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Tabl	18	PF20   PF8		Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S

Section   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Co	SAMPLE MUNDER	11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-06 11-5-0	11-6-86 10500 5.2 R 2.1 13 5.4 31 B 15700 30 30 19 Bt 19 Bt	11-6-8-32 11-6-8-32 11-6-8-8 130 130 130 130 130 133 133 133 134 135 135 135 135 135 135 135 135 135 135	25-4 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 11-4-96 1	25-8 11-6-86 11-6-86 123 124 121 121 121 121 121 121 121 121 121		PC-SB-34 1.5-2: 11-6-84 9180 12 N 12 N 13 N 11 10300 0 21900 910 153 11.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 15.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.18 16.
Sumplication (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.S.) (C.	SAMPLE MUNEER BC-58-20  SAMPLE BEFIN 1.5-2  Aluanue 3870 Antamony 1.5-3  Aluanue 3870 Antamony 5.1 R  Beryllium 199 Beryllium 5.4  Corcatum trivalent 13 Cobalt 6.4  Coper 247 F  Iran 13000 tead 44  Mangamere 159  Accoper 247 F  Iran 13000 tead 44  Mangamere 159  Accoper 247 F  Iran 13000 tead 44  Mangamere 159  Accoper 236 R  Selenium 17  Lin 10  Vanadum 17  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 10  Lin 1	11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-16 11-5-1	5.2 B 5.2 B 27.1 13.0 5.4 13.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	11.6-10-32 11.6-10-32 11.6-10-32 12.30 12.30 12.30 13.3 13.3 13.3 13.3 13.3 13.3 13.3 1	86.59-33 6 0-6" 11-6-66 11-6-66 20 30 8 20 30 8 30 8 30 8 30 9 30 9 30 9 30 9 30 9 30 9 30 9 30 9	MC-5B-34 1 11-6-84 111-6-84 287 287 287 287 287 287 287 287 287 287		9160 11-6-64 11-6-64 12 11 11-6-64 12 12 11 11 11 11 11 11 11 11 11 11 11 1
Mills Sametric (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-th (11-5-	Aluainua 3870 Aluainua 3870 Astinany 5.1 R Arsenic 199 Berylliua 199 Berylliua 199 Chraniua 179 Chraniua 179 Chraniua 179 Ira 15000 Lead 44 Kangante 15000 Lead 44 Kangante 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 15000 Ira 1500	11-5-6 11800 5.4 N 3.2 S.5 15 S.6 1400 4.2 4.2	11-6-86 10500 5.2 8 2.1 13 5.4 15700 38 6 19 88 19 88	11-4-0-6 1370 138 143 152 153 161 17 181 181 181 181 181 181 181 181 181	11-6-66 4770 30 R 102 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-6-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-66 11-	11-6-86 12316 207 207 2130 8 34100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 24100 2		11-6-86 9180 12 k 13 k 11 l 10360 l 11 l 153 l 153 l 153 l 153 l 153 l 153 l 153 l 153 l 153 l 153 l 153 l 153 l 153 l 154 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 155 l 1
Marinese	Aluainua Astissony Arsenit Berina Berina Beryiliua Beryiliua Chrasiua Chrasiua Chrasiua Chrasiua (coper lica lead Mangasese Minitel Seleniua Silver Ibaliua Line Vanadiua Line Cyanide Cyanide	2.5 2.5 2.5 2.5 2.5 3.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4	10500 5.2 R 277 2.1 13 5.4 3.6 15700 30 30 19 Rt 172	1930 1980 1980 1980 1980 1980 1980 1980 198	50 B 287 287 287 287 287 287 287 287 287 287	8310 207 207 221 3130 F 34100 2030 2030 2030 2030 2030 2030 2030 2	~ = 3 - 7	9180 17 17 17 17 17 17 17 17 17 17 17 17 17 1
Machinery 15.1 R 5.4 R 5.2 R 19 R 30 R 712 R 19 R 19 R 19 R 19 R 19 R 19 R 19 R	Mattacony Mesense Merstana Bergilaua Bergalaua Corcaina, trivatent Cobalt Copper Iron Iron Mictel Seleniua Silver Inaliaua Inalia Vanatiua Cyande	25 23 25 25 25 25 25 25 25 25 25 25 25 25 25	2.1 2.1 2.1 2.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	200 1.3 200 2.3 200 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 200 2.3 20	36 B 36 B 37 B 37 B 37 B 37 B 37 B 37 B	287 287 121 121 121 121 121 121 121 121 121 12		12 k 328 17 13 10360 a 21966 310 153 1.18 307 Re 13
Marcani	Arsense Bursan Bursan Bursan Chrassan Cadasa Cadasa Cadasa Cadasa Cadasa Cadasa Bursan Bursan Bursan Isalisa Isalisa Cyassa Cyassa	2	25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2	200 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	26 7 2 2 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	207 R 121 209 203 203 203 203 203 203 203 203 203 203	=3- "	12 k 12 k 17 75 75 10360 8 21966 910 115 116 116 116 116 116 116 116 116 116
Performance   177   342   271   149   287   247   733     December   13   14   2.5   2.11   14   25   27   31     Chemana, (rivalise)   13   13   13   13   13   13   13   1	beryllua beryllua bermana, trivalent Cabalt Coper Ica Ica Bernua Silver Isaliua In In Vandiua Cyande	2 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	23 18 18 18 18 18 18 18 18 18 18 18 18 18	25 102 37400 1900 1900 6.06 110 7.5 2.3 2.5	20 22 121 2400 2400 2400 2500 2500 2500 2500 2500	-3- "	328 17 10360 10360 10360 10360 11.18 11.18 10.7 Re 13
Construction 5.4 2.5 2.1 14 20 22 31 Construct 13 15 11 14 12 12 12 12 12 12 12 12 12 12 12 12 12	bergan Cadaina Cadaina Chemina, trivalent Cobelt Coper Lica Lica Selenius Selenius Silver Fallius In In Vandius Cyande	2.2 2.3 2.5 2.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	2.1 5.4 15700 15 15700 15 15700 15 15700 15 15700 15 15700 15 15700 15 15 15 15 15 15 15 15 15 15 15 15 15 1	23 25 25 25 25 25 25 25 25 25 25 25 25 25	25 102 5.2 4630 b 37400 1900 6.0 1900 6.0 110 m 5.3 24 26	22 121 3130 F 34100 2430 244 5.42 25.8 F 25.8 F 25.8 F 25.8 F	= 3 - "	17 75 10360 10360 21966 910 153 1.18 307 Re 13
Commune, frivited 3.4 7.5 2.1 18 25 22 31 Cheaning, frivited 4.4 5.4 5.4 5.4 102 121 204 Cheaning, frivited 4.4 5.4 5.4 5.4 102 121 204 Cheaning, frivited 4.4 5.4 5.4 5.4 102 122 120 120 Cheaning, fried 4.4 5.4 5.4 5.4 102 122 120 Cheaning, fried 4.4 5.4 5.4 102 123 123 123 124 Cheaning, fried 4.4 5.4 5.4 102 123 123 123 124 Cheaning, fried 4.4 5.4 5.4 102 123 124 Cheaning, fried 4.4 5.4 5.4 102 123 124 Cheaning, fried 4.4 5.4 102 123 124 Cheaning, fried 4.4 102 123 124 Cheaning, fried 4.4 102 123 124 Cheaning, fried 4.4 102 123 123 123 Cheaning, fried 4.4 102 123 123 123 Cheaning, fried 4.4 102 123 123 123 123 Cheaning, fried 4.4 102 123 123 123 123 Cheaning, fried 4.4 102 123 123 123 123 123 Cheaning, fried 4.4 102 123 123 123 123 123 123 123 123 123 12	Cadaina Chranina, trivalent Cabalt Caper Lica Inca Ranganese Rercury Mictel Selenius Silver Ina Vandius Linc Cyande	23 25 25 25 25 25 25 25 25 25 25 25 25 25	2.1 13 5.4 3.0 3.0 3.0 3.0 3.0 19 80 19 80 17 2	1.0 3.4 2.5.3 0 2.5.5 0 2.25 12.5 12.5 12.5 13.5 14.5 00 14.5	25 102 3.2 4630 b 37400 1900 4.06 4.06 5.3 7.5 7.5	22 121 3130 F 34100 2430 244 5.42 255 RB 23 412 23		17 75 11 10360 8 21966 710 153 153 15.18 307 Re 13
Chastic Lividist II II II II II II II II II II II II II	Chronium, trivalent Cobalt Copper Iron Iron In Manganese Mercury Mictel Selenium Silver In Vanadium In Vanadium Inc Cyande	15 15 15 15 15 15 15 15 15 15 15 15 15 1	13	34 8.9 26.30 225 225 135 135 2.81 2.81 2.81 14 24 15 16 17 18	102 3.7460 1900 1900 1900 1900 1900 1900 1900 19	121 3130 # 3400 2030 2030 84 5.42 23.88 412 412 23		75 75 11 10360 8 21960 1103 1103 1104 104 104 103 104 103 104 104 104 104 104 104 104 104 104 104
Cobset 1, 14 5, 15 5, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17 1, 17	Cobalt Coper Iron Lead Manganese Mictel Selenium Silver In Vanadium Linc Cyande	100 100 100 100 100 100 100 100 100 100	15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 15700 1	25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00 1.25.00	5.2 4630 1 37600 1900 1,00 5.3 22 22 24 25 26 26 26 27 26 26 27 26 26 27 27 28 26 26 26 26 26 26 26 26 26 26 26 26 26	3130 # 34100 2030 2030 2030 2030 2030 442 2030 412 2030 412	= = = = = = = = = = = = = = = = = = = =	11 10360 8 21966 310 133 1.18 307 Re 13
Copper 130 1 11 11 11 11 11 11 11 11 11 11 11 11	Copper Iron Lead Manganese Mercury Mictel Selenium Silver Ila Vanadium Unc Cyande	197 177 177 177 177 177 177 177 177 177	15700 15700 1500 1500 1500 1500 1500 150	2620 1 23000 225 225 225 225 226 226 226 226 226 226	4630 B 37400 B 37400 B 4.06 B 31.0 B 31.0 B 31.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7 C 3.7	3130 F 34100 2030 2030 2030 2030 2030 2030 2030 2	= # - "	10369 8 21966 310 153 1.18 307 Rt 13 27 27 27
University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   Uni	lrea lead Manganese Mercury Mercury Mercury Mercury Selenium Silver In Unadium Unadium Unacury	15 45 60 60 60 60 60 60 60 60 60 60 60 60 60	15706	25000 225 225 125 127 2.01 765 ffs 16 24 24 24 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 2	37460 1900 1900 1000 31.5 22.2 24.2 26.3 26.3 26.3 26.3 26.3 26.3 26.3 26	34100 2030 3542 442 235 61 412 412 23	7	21906 310 153 11.18 307 Rt 13 27 27 2740
Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp	Ranganese Bercury Bercury Belenius Silver Salver In Unadius Unadius Unadius Unadius	412	25 27 27 27 27	225 123 123 2.81 765 88 6 6 14 24	1900 4.04 310 80 3.3 24 26 20 20 20 20 20 20 20 20 20 20 20 20 20	2036 5.62 235 62 23 64 23 64 23 64 23 64 23 64 23 64 23 64 23 64 24 25 64 26 64 27 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 28 64 26 2		310 153 1.18 367 Re 13 22 22 2740
Hanganese 191 412 334 123 49 14 294 Mercury 6-16 2-16 2-16 3-12 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Manganese Mercury Mictel Selenium Silver Salver Tin Vanatum Zinc Cyanide	2 = 2 =	22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	123 2-81 765 fre 765 fre 16 24 1590	2.3 2.3 2.3 2.3 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	5.42 25.62 23 23 24 412 23 24	-	153 1.18 307 Re 13 22 2740
##GENTY 4-18 1-18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Mercur Mictel Selenium Silver Silver In In Vanalium Zinc Cyanide	=	19 H	2.81 765 fite 16 16 17 18 18	4.5 3.5 4.7 2.7 2.0 2.0	5.42 255 ftt 23 412 23		1.18 307 Re 13 22 2740
Selenta 236 ft 18 ft 15 ft 319 ft 355 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 35 ft 3	Mictel Selenium Silver Ibalium In Vandium Ibc Cyande	=	22 22	765 ft 7 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	310 Rs 25.3 26 20 20 20 20 20 20 20 20 20 20 20 20 20	23 E 23 E 24 E 24 E 25 E 25 E 25 E 25 E 25 E 25		307 Re 13 22 2740
Selver  Salver   Seleniua Silver Balliua Ilia Vandiua Vandiua Linc Cyanide		24	4 17 28 1890	7. 7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2 <b>3</b> 2	35 SS SS SS SS SS SS SS SS SS SS SS SS SS	13 22 27 <b>40</b>	
Silver  [La   1,	Silver Ballium In Vandium Vandium Linc Cyanide		2.2	4 P. 20051	<b>7. 7.8</b>	ឌ ដូន	35 SS SS SS	13 22 27 <b>40</b>
1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,1   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0   1,0	Skillin Tin Vandina Zinc Cyande		22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 8 3	\$ 2	57 25 3420	22 2740
Cyanide 17 27 24 25 25 25 25 25 25 25 25 25 25 25 25 25	Vanadium Vanadium Line Cyanide		24	2 2 2	2 2 3	? 2	34.50	27
Cyande 917 177 157 156 150 150 150 150 150 150 150 150 150 150	Jan Gyande	;	2 2	5. S.	8 5	3	25 S	2740
	Cyande	÷ ≘	:		21.5	1230		
		•		:		•		
		:	i					
† · · · · · · · · · · · · · · · · · · ·						!		
						:		
							:	

<u>VII. (N. 1798)</u> 421

-, <u>-</u> -		001	•			<b>.</b>		_
				;			:	
 	26 Broomform 27 4-Methyl-2-pentamone 28 2-Heranone 29 letrachloroethene	21 Bibroachleraethane 22 I,1,2-Trichleraethane 22 I,1,2-Trichleraethane 23 Denzee 24 civ-1,3-Dichleraprapeae 25 2-Chleraethyl Vinyl Ether	16 Vinyl Acetate 17 Bronndsthlermethane 18 1,2-Bithlermpropane 19 trans-1,3-Bithlermpropage 7 Trick-1,3-Bithlermpropage	12 1-2-Dichorechane 13 1-2-Dichorechane 13 2-Dichone (MEX) 14 1,1,1-frichlorechane 15 Carbon Tetrachloride	Accione 7 Carbon Hisbiride 8 1,1-Bichlorosthone 9 1,1-Bichlorosthone 10 trans-1,2-Bichlorosthone	Chlorosetham   Jrossetham   Jrossetham   Vinyl Chloride   Chlorostham   Gethylese Chloride   Chlorostham	SAMPLE MUMBER LOCATION/GRID DATE SAMPLED	3116
. •			•	:	20 11	¥	11-10-04 C-1 DC-88-01	3116
:				: a	NE		8-1 11-10-84	7 F 8
				:	2	<b>2</b>	9C-SS-03 9-2 11-11-04	11. E
		. <del>.</del>				: :: :	9C-SS-04 E-2 11-11-66	5 T E
	ì			- H	8	a -	9C-SS-05 H-2	2 F
:	•				=	5	N-85-04 N-72 11-11-04	
4				<b>3</b> K	25 31	<b>=</b>	PC-56-07 1-2	112
Ē			!	37 <b>-</b>	:	<b>#</b>	DC-55-08 1-2	\$11E 6 \$1K 6
:	22 <b>.</b>			<b>57 1</b>	5	<u>.</u>	DC-SS-09 A-3 11-11-86	9 36 6
:	Ē. <b>.</b>			•		<del>5</del>	DC-SS-10 D-3 11-11-86	9 3115
¥ ;	5 E				37	<u>.</u>	0C-SS-11 C-3	9 3115
;	280		•		27 PJ	•	DC-SS-12 D-3 L1-11-86	SHE & SHE & SHE G
30 F		•		<b>₹</b>	32	i E	0C-59-13 E-3	9 3115
:	72 <b>8</b>		i i	<u>.</u>	!	2	DC-SS-14 F-3 11-11-66	9 1115 9 3115
12	-		;	 		ž	DC-55-15 G-3 11-11-86	9 1115

Surface Soil Volatiles

\$8113818A 1105 83813M5

										· ··-						
										<b></b>			_	<u> </u>	zanalyl istol	 <b>22</b>
															Chlorobenzene Ethylbenzene Styrene	24 27
				t 21 72	\$0						12.5				Tetrachloroethone . Lilylaria - Tetrachloroethane Teluene	30
-					7019	230	30 1	1 6 0Z - — -	<u>52 81</u>	#. BS 0 015	130 0	<b>66</b>			Drocotore 4-Nethyl-2-pentanene 7-Netainene	82
															Bensene cell-1,3-Bichloropropene ?-ChloroethyT VlayT EthyT	34
								-		•					Trichloroethone Bibronechloroeethane Tyl, 2-Trichloroethane	22 12
		***									<u>.</u>				Presente bige passibano 1,2-bichiorope opano Erana-i1,5-bichioropeano Erana-i1,5-bichioropeano	<b>0</b> 1
								<b>-</b> •		·				-	1,1,1-1rischloroethone Corbon Tetrochloride Vinyl Acetote	\$1
	4 90	0 %	4 71	• 0)	•		2)			'	€ 081		•	4 11	Chloroloroe 1-2-Bichloroelhone 3-Pulanone (MCK)	21
															onedles eldale 1,1 1,1-814 bis est base 1,1-814 bis est bese 1,2-84 bis est bese	•
	4 09 4 75	4 74 14 El	10 LT 19 29	14 B1	06 06	24 D	1) 6 85	€ ZŦ	4 90) 4 971	0 64 0 52	0 0) I 0 10		r0 £1 • • •	19 8Z 19 9S	Vinyl Chloride Vinyl Chloride Relhylene Chloride Acelone Cerbon Blaultide	7 \$ 1
-11  \$-1	98-11-11 S-V	11-11-89	99-11-11 9-1	98-11-11 9-H	98-11-11 9-4	98-11-11 6-9	11-11-89 E-f		1:1		98-11-11 9-8	10-11-11 1-V		11-11-09 0-2	LOCATION/GAID BATE SAMPLED Chloroethane	1
5-30 3115 .	DC-22-36 2116 e	PC-55-38	DC-55-31	DC-22-39	# \$2-55-30 3115	PC-22-34 2116 B.	9 3115 27-55-30		12-95-06 3115 B		PC-22-14 .211E @	07-55-30 2115	•	# 71-\$5-DI	3115	

SITE	ZILE 0	ELLE P.	ELLE E	SITE G	SITE	SITE	FITE 0	- SITE 6	SITE 6	SITE 6	SITE 6	SITE 6	SITE G	BL ANY	DF WAN
SAMPLE MUMBER LOCATION/GRIB BATE SAMPLED	8C-66-31 1 8-5 11-11-84	0C-66-32 C-5 11-12-86	BC-88-33 B-5 11-12-84	BC-55-34 E-5 11-12-84	DC-66-35 F-5 11-12-86	DC-65-34 5-5 11-12-84	DC-88-37 N-5 11-12-06	0C-SS-30 A-6 11-12-04	DC-SS-39 B-6 11-12-86	8C-SS-40 C-6 11-12-86	DC-SS-41 B-6 11-12-86	DC-\$5-42 F-6 11-12-86	BC-SS-43 B-7 11-12-86	DC-SS-44+	DC-SS 4:
1 Chlordoethan# 2 Broomethane 3 Vinyl Chloride	<u>-</u>										-			1 1 2 50 200 1	
4 Chloroethone 5 Methylene Chloride	70 3	35 0	230 \$	14.1	23 D		49 b	40 )	43 b	40 B	37 b	6(: B	29 F	52 b	6
4 Acetone 7 Carbon Bisulfide	34 0		170 9	19 91		25 0	4 1	43.4	44 1	150 8	41.0	58 0	21 64	18 61	
8 1,1-Bichloroethon															
9 i,i-Bichloroethan 10 trans-1,2-Bichloro						•									
11 Chlarofora 12 1-2-Bichloroethan										•					
13 2-Butshoon (MEK) 14 1,1,1-Trichloroeti		— 42 R		- 27 8			24 8	35 9	59 9	46.3	37 9	24 9	40 3		
15 Earbon Tetrachlori															
ió Vinyl Acetate 17 Broodschlorooethi							,								
IB 1,2-Dichloropropar 19 t/hhs-1,3-Dichlori		<del></del>	<del></del>												
20 Trichloroethene 21 Bibroochloroeth					•	11.1		19							
22 1,1,2-Trichloroett		•	·				2.1	80							
24 cis-1,3-Dichlarape								•0					4 J		
25 2-Chloroethyl Vin												-		•	
27 4-Nethyl-2-pentano 28 2-Nexamone	ne 196 , 16 B.	29 J	2000 89 B		100			140	12 J	31 ,	34				
29 Tetrachlaraethene 30 L,L,2,2-Tetrachlar	21 methane						12 3								
31 Taluene 32 Chlorabonzene				- 37 10				1400		33					
33 Ethylbenzene				••			55	140							
34 Styrene 35 Total Tylenes							150	170							
						•									
						• •				•					
		- <del>-</del> .					-								

15 m

~
2.
=
_
•
~
-
ų.
•
-
_
_
_
•
_
•
-
_
_
•
-

	<u> </u>	<u> </u>	• ( : i , i _	• • ) ) :		: : }		= 5 €	<u> </u>	5 2			<u> </u>	\$ 5 6 0 0 V	• • • • • • • • • • • • • • • • • • •	<u>&gt;</u> 1 !
					34 Styrene 35 Intal Tylenes	_ : :	20 Probators 27 4-Methyl-2-pentanone 29 2-Meranone 29 Tetrachloroelbook				15 Carbon letrachleride 15 Carbon letrachleride 16 Vinyl Acetate 17 Brosodichlerosethane		1,1-Bicklerothene 1,1-Bicklerothene 1,1-Bicklerothene 1,1-Bicklerothene	Chloroethane Preception Vinyl Chloride Chloroethane Rethylene Chloride Acetone	SAMPLE MUNDER LOCATION/CRID DATE SAMPLED	Since
		:		!			:					1 55		10 L 32 L 24 L 22 L	6 11-13-86	C 3118
•				-												

Ξ
•
-
-
-
=
•
3
-
2
.2
قد
•
-
ŝ
Ã
:
-
-
_
3

	SANTE MUNDER LOCATION/GRIB BATE SAMPLER	MC-65-01 C-1 L-10-84	#C-55-02  -1  11-10-66	DC-55-03 D-2 11-11-06	9C-5S-04 E-2 11-11-86	H-2 11-11-16	H-2 11-11-86	BC-65-07 1-2 11-11-06	90-55-08 [-2 11-11-86	DC-55-09 A-3 11-11-86	DC-55-10 6-3 11-11-86	0C-5S-11 C-3 11-11-86	pC-55-12 p-3 11-11-04	NC-55-13 E-3 11-11-86	0C-55-14 F-3 11-11-66
	Phenal bis(2-Chlarmethyl)other	•			•			1						;	}
	1,3-Bichlerabenses 1,4-Bichlerabenses						;								
-	Bearyl Alcabat 1,2-Sichlarabaseae 1,2-Helbylphenal	•		i	i	:									
2=2	4-Rethylphenal R-Mitrosa-a-Dipropylasiaa Hesschloraethaa					•				·					
22	_		!	: !		-		1							
2 2 2 2	2,4-Disethylphens! Penzaic Acid		:			•	: : :	į		•				•	, 1
= <u>+</u>	bis - (2-Chieroethory) aethane 7,4-Bichlerophehel				;					;		!	!	:	
***	Raphthalene C-Chloromiffine Meschloromiatene									7 010		14000			
***									! 1			1000 1			
2223	2,4,6-Trithlaraphonal 2,4,3-Trithlaraphonal 2-Euloranaphthalana 2-Hitraaniine						:				·				ı

											<b></b>				
	SAMPLE MUMBER LOCATION/GRID	8C-66-15 6-3	BC-65-16 0 6-3	BC-\$\$-17 H-3	OC-SS-10 A-4	DC-55-19	BC-65-20 C-4	BC-SS-21 B-4	DC-\$\$-22 E-4	DC-88-23 F-4	BC-SS-24 G-4	DC-SS-25 I G-4	DC-SS-26 H-4	DC-SS-27 1-4	GC-SS-28 J-4
	DATE SAMPLED	11-11-84	11-11-06	11-11-06	11-11-04	11-11-84	11-11-86	11-11-06	11-11-06	11-11-86	11-11-86	11-11-86	11-11-86	11-11-86	11-11-86
	···Phenol				- ··+					78 J					
	bis(2-Chloroethyl)ether														
	2-Chlorophenol		-												
	1,3-Bichlorobenzene							2214044							
	1,4-Dichlorobenzene							22000000							
	Penzyl Alcohol	- · · · · · · · · · · · · · · · · · · ·													
	1,2-Bichlorobenzene									87 J					
	2-Hethylphenol bis(2-Chloroisopropyl) other														
	f-Methylphonol														
	M-Nitroso-n-Dipropylanine														
	Heracygoraespane										•				
	Mitrobenzene					- ,		_							
	tobpolans   ittobentans														
	2-Hitrophenal														
	2,4-Binethylphenol														
	Benzoic Acid														
	bis-[2-Chloroethoxy]oethane														
	2,4-Bichlaraphenal									120 J					
	1,2,4-Trichlorobenzene			110 J						180 J				140 J	180
	Naphthalene			120000			1800 J			110 )					
	4-Chloroaniline														
	Herachlorobutadiene														
	4-Chiera-3-methylphenol														
	7-NethylnophthaTene														
	Hexachi erecyc lopentadzene														
	2,4,6-Trichlorophenol														
26	2,4,5-Trichlorophenal							•			•				
	2-Chloronaphthalone														
36	2-Mitroaniline									1000 1					3400

tz tz

SAME MARKED   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST   CKSST	Section   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Reference   Refere	Section   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Co	•										A 3110	- 111			• ==	A 31.15 A 31.15	2 2 2
Mark California   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5	Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark   Mark	Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continue   Mail Continu		SAMPLE MUNKER	K-53-34	PC-88-30	1C-88-31 I	MC-55-32	BC-88-33	MC-56-34	BC-88-35		M - 55-33	BC-53-30	PC-55-39	DC-55-40		DC-53-42	DC-55-1
Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main   Main	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the			LOCATION/GAID DATE SAMPLED	11-11-15	#-11-11	71-11-11 11-11-18	79-21-11 11-13-80	11-12-0	11-12-09	-F-S .		H-5 11-12-86	A-6 11-12-04	8-6 11-12-06	C-6 11-12-86		F-6 11-12-86	P-7 11-12-6
		5.15 inclusiones     5.15 inclusiones     5.15 inclusiones     5.15 inclusiones     5.15 inclusiones     5.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 inclusiones     6.15 in	1	Passil 2 blorachyllether													;		
		12-101 titosis   11-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-101 titosis   12-1	:	1,3-Dichleratene	1	İ						340.5		1 0012					ř
1,			:	6 beary! Alcoho!	;														₹
Unit   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief   Chief	Note   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Pa	Unit-Chrostoperpy    elber		7 1,7-Dichle/ebenzese 8 2-Relhylphenel		:				: : : !	:							· · I	
		Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-state   Filtron-stat		9 bis(2-Chloreisopropyl) other					1	;									
				10 4-Netwyspectes 11 M-Wilrese-a-Bipropylasiae						:									
Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the   Inspire the	supported	top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-bring   top-	:	17 Herschlorgethang 13 Hitrobenzen	!		!	•			:							į	
2,4-Sinethylphenol berseic Krid berseic Krid berseic Krid berseic Krid berseic Krid 3,1-Ticklerebenzein 1,2,4-Fricklerebenzein 1,2,4-Fricklerebenzein 1,2,4-Fricklerebenzein 1,2,4-Fricklerebenzein 1,2,4-Fricklerebenzein 1,2,4-Fricklerebenzein 1,2,4-Fricklerebenzein 2,4,4-Fricklerebenzein 2,4,5-Fricklerebenzein 2,4,5-Fric	2,4-lisethylpheal bearst Krid bearst Krid bearst Krid bearst Krid bearst Krid bearst Krid 1,2,4-fricklardearst 1,2,4-fricklardearst 1,1,4-fricklardearst 1,4-fricklardearst  2,4-liestbylpknel besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besser k.id besse k.id besser k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id besse k.id bess k.id besse k.id besse k.id besse k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id bess k.id be		14 Isopherma 15 2-Bitrophemal																
	Next   State   Next   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State			16 2,4-Binethylphenal	1				1										
7,1-Birlichedesis  2,1-Birlichedesis  1,2,4-Friehrobersen  1,2,4-Friehrobersen  1,2,4-Friehrobersen  1,2,4-Friehrobersen  1,300 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1 10	7.1-lithle-dynamics  2.1-lithle-dynamics  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2.1-frital-releases  1.2	7.4-Utilité@baddi 1.2.4-finiderdeniene 1.2.4-finiderdeniene 4-theranillar Herchlorabeldene 4-theranillar Herchlorabeldene 2.4.4-finiderapeldene 2.4.5-finiderapeldene 2.4.5-finiderapeldene 2.4.5-finiderapeldene 2.4.5-finiderapeldene 2.4.5-finiderapeldene		17 Denzoic Acid 18 bin-(2-Chiormethany)aethane															
1,7,4-frichorbenzene   1500	1,7,4-fricklerobenzene	1,2,4-fricklerdenizee		19 Z,4-Bichlöraphenst								1				0029			1
#Chieconifie  Werecklerobutston  4-Chiera-J-sethylpheel  7-Rethylpheel  ievaniline   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobutstano   Werecklarobuts	#Ehloranilise Neuchloranilise Neuchloranilise  #Ehloranilise  #Elloranilise  #Elloranilise  #Elloranilise  #Elloranilise  #Elloranilise  #Elloranilise  #Elloranilise		20 1,7,4-frichlorobenzene 21 Mobithalone						23000		7 57	\$300 1	9000	1800					
Nerachiarabutation 4-Chiora-3-achyripheol 7-NeibyTaighthaleoc Nerachoracyclopentadione 2,4,5-frichlarabuse 2,4,5-frichlarabuse 2,4,5-frichlarabuse 2-Chiorachithaleoc 2-Witrassiliae	Merachiorobulation  -Chioro-3-selp-passel  -Thibylaidabalen  -Thibylaidabalen  -Thibylaidabalen	Netachlorobuladine 4-Chloro-3-sethylpheel 7-Reibylpheel 7-Reibylpheel 850 J 1500 J 14,4-Firchoropheel 7-Chlorosphialene 7-Chlorosphialene 7-Witrosoiline	1	22 4-ChlorosalTine			•			*		•	200	256				9.	2
4-Chiore-3-sethylpheei  2-Reibylnäphladen  2-4-frichtenphenei  2-4-frichtenphenei  2-4-frichtenphenei  2-4-frichtenphenei  2-frichtenphenei  2-frichtenphenei  2-frichtenphenei  2-frichtenphenei  2-frichtenphenei  3-frichtenphenei  4-Chiere-3-methylphenel 7-Reibylnáshthalené N-staforery-tegentadiene N-staforery-tegentadiene 2.4.4.5-Trichberghenel 2.4.5-Trichberghenel 2.6.15-Trichberghenel 2-Chierensphibalene 2-Mitrassiline	4-Chlore-3-methylpheed  7-Reibylmighthalend Nexachiorex-populations Nexachiorex-populations Nexachiorex-populations 14,6-Tricklorex-pheed 2-4,5-Tricklorex-pheed 2-4,5-Tricklorex-pheed 2-Chlorex-pheed 2-Witrosculine																		
The thy inaphilation  Merchior acyclopation to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	Televinaphitalene Mercelerarytepentadiene Z.4.6-fritcheraphenel Z.4.5-fritcheraphenel Z.4.5-fritcheraphenel Z-6.1100 J 220000	Thity in philabelians Nurschiology (1990) 1200 1 24,4 Firther opposed 1 24,5 Firther opposed 1 24,5 Firther opposed 1 24,5 Firther opposed 1 2500 1 26 Firther opposed 1 26 Firther opposed 1 27 Firther opposed 1 27 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firther opposed 1 28 Firth		24 4-Chiora-3-sethyiphenel															
Merachioracyclopentadione 2,4,5-fricklorophenal 2,4,5-fricklorophenal 2-Chiorachithalena 2-Witroscilae	Merachioracyclopontadione 2,4,6-frichosphene) 2,4,5-frichosphene) 2-frichosphene) 2-frichosphene) 2-frichosphene) 2-frichosphene) 2-frichosphene)	Merachioracyclopontadione 2,4,6-frichoraphenal 2,4,5-frichoraphenal 2-frichoraphibalene 2-friconaphibalene 2-friconaphibalene		Z Z-Bethyinabilbalene				1 [ !				7 8		0.00	1				
2,4,5-Trichlerophenel 2-Chierosophibalene 2-Chierosophibalene 2-Mitrosophiba	2,4,5-Frickler opbess 2-Kistensphlatene 2-Kistensphlatene 2-Kistensphlatene	2.4.5-Tricklerophesol 2-Chieronaphthalene 2-Mitrosoiline												i					
2-Chieronaphthalone 2-Mitronailine	2-Chieronophthalene 2-Nitronoline	2-Kitrosniline	!	~	•				1		:			٠		1000		ł	
0011												441	***************************************						
			:		1	ļ	1 1 1	٠		:		3	000077						

428

3118	N AN	N AND	r mis	r 3115	SIE J
SAMPLE HUMBER	9C-SS-44	PC-SS-13+	N-53-4	RC-68-47	PC-SS-4@4
LOCATION/GRID			×	兲	馬 1000000000000000000000000000000000000
DATE SAMPLED	11-13-84	11-11-14	11-11-06	11-13-86	11-13-86
7 President .			!		
2 bis(2-Chiproethyl)ether					
3 2-Chierophenol					
4 1,3-Dichlorobenzene	:		:	,	1
5 I,4-Bichlerebenzene					
6 Penzyl Alcohol					
7 1,2-Bichlorobenzone					
0 2-Helbylphenel					
9 bis[2-Chloreisopropy]) ether					
10 1-Methylphenol	:				;
11 M-Mitroso-n-Dipropylacine					
12 Herachlersethane					
13 Hitrobenzene				!	
14 Isopherane					
15 2-Hitrophenei					
16 2,4-Disethylphenol					
17 Penzosc Acid					
10 bis-(2-Chloroethoxy)sethane					
19 2,4-Bichlorophenal				:	and the second second second second second second second second second second second second second second second
20 1,2,4-Trichlerobenzene					
21 Maphibalene					
72 4-Chlerosálliáe			:		
23 Menachlerobuladiese					
24 4-Chipro-3-sethriphesei					
75 2-Methy Inaphthalese				1	
26 Nerachjerscyclopentadiene					
27 2,4,6-Trichlorophenal					
20 2,4,5-Trichlorophenol	;		•	,	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
29 2-Chiaranaphthalese					
30 2-Mitrospiline					

## Surface Soil Sectionalities

	SITE	SITE B	SITE 8	SITE	SITE 6	SITE 6	SIIE 6	EITE 6	SITE 6	SITE 6	SITE 6	3112	SITE 6	SITE 6	ZILE 6
-	SAMPLE MUMBER LOCATION/GRID DATE SAMPLED	9C-SS-61 C-1 11-10-86	9C-SS-02 6-1 11-10-86	9C-6S-03 0-2 11-11-06	8C-SS-04 E-7 11-11-86	9C-88-95 H-2 11-11-86	9C-SS-06 N-2 11-11-84	9C-SS-67 1-2 11-11-06	9C-SS-08 1-2 11-11-86	BC-65-09 A-3 11-11-86	DC-55-10 D-3 11-11-06	BC-55-11 C-3	BC-SS-12 B-3 11-11-86	DC-55-13 E-3 11-11-66	DC+SS-14 F-3 11-11-85
<del></del>	I Disethyl Phthalate		• • •	<b></b>									•	- <del>-</del>	
	2 Acemophtylune 3 3-Mitrosofline														
	1 Acenaphthene							•				576 3			
	5 2,4-Dinitrophenol 6 4-Hatrophenol														
	7 Bibenzofuran					<del></del>	<b></b> .					979 J			
	8 2,4-Binitrataluene 9 2,5-Binitrataluene														
	10 Diethylphthalate														
	11 4-Chlorophenyl-Phonylather														
	12 Fluorene 13 4-Mitraaniline							×							
	14 4,6-Binitro-2-methylphenol														
	15 N-Witrosodiphenylanine 16 4-Brosophenyl-phenylether														
	17 Hexachlorobenzene														
	IB Pentachiorophenoi									3900 7		4700 J	7860 J		
	19 Phénanthrene 20 Anthracene											4800 J			
	21 Ba-m-butyl phthalate				170 6	J 2800 B		440 33	320 bJ						
	72 Fluoranthene 23 Perene							290 J		540 J			1300 J 1100 J		
	24 Butyl Benzyl phthalate							174 1					1100 3		
	25 3,3'-Dichlorobenzidine				····· • • • • ·				••	··· <del>-•</del>		*** 1			
	26 Denzo(a)Anthracene 27 bis(2-ethylhenyl) phthalate		710	230 J	470			220 J 170 J	140 J	950 J 240 J		4000	820 J		
	28 Chrysene				•			310 1			•				4400 J
	29 Bi-n-octyl phthalate 30 Pensoib)Fluoranthene									750 J	610 B.	J 2600 BJ			14000 P
	31 Dense(k)Fluorantheme					· · · · · ———	<del></del>	<b>610</b>	160 J	130 J			1200 J		
	32 BenzolajPyrene							190 3	47.1				520 J		
	33 Indeno(1,2,3-cd)Pyrene 34 Benzolg,b,i)Perylene	-						280 J							
	35 Bibenz(a,h)Anthracene							230 J		1100 3					
							<b></b>								
											•				

430

.

:

•

		==	3	•	<u>-</u> -	;_	:	<u>:</u>	3	ť	2	<u> </u>		3		<u>:</u>	<u>.</u>	<u> </u>	<u>;</u>	Ē.	•		<u>.</u>	į.	<u> </u>	Ξ	<u>•</u>	Ē	*	<u>•</u>	<del>-</del>	• •	•	<u>-</u>	
			_	29 Dr-a-octyl ahthalate	_	27 his(2-sthythoxyl) phthalate		75 3,3 Dichlorobeazidine	24 Butyl Benzyl phthalate	23 Fyrene	22 Fluoranthene	21 Bi-n-bulyl phthalate	20 Anthracene	19 Phenanthrene	in Protectionaphono	17 Henachlorobenzene	16 4-Brosophenyl-phenyletter	IS R-Ritresodiphenylaning	14 4.6-Dinitro-2-sethylphenol	II L-Hitramilian	12 Fluorene	11 4-Chloraphonyl-Phonylether	10 Diethylphthalate	7 2.6-Disitrotoluses	2.4-Dipitroteluese	6 4-Mitrophenol	5 2,4-Binitrophenol	4 Aconophthene	3 3-Mitrospiline	2 Acenaphtylene	1 Direthyl Phthalate	A415 A554 CE 6	DATE SAMPLED	SAMPLE BLADER	**************************************
;	22 <b>000</b> J	1 .	47000		39000 J					85000	1000			r. 8000	170000								:					,			:	11-11-00		9C-SS-15	9110
	20000 J		9000		J9000 J		27000 J	B007E		71000	15000			- 1	140000								:					1800 1				11.11	11.11.2	DC-58-14 I	<b>1</b> 1 1 1
										30(w) J				L 60/0		1 9999 1										]		1100 J						DC-56-17	# 31 K
																				:			1			:						11.11.	N-4	DC - 83 - 10	216
																			-				1									11-11		PC-SS-19	- T
		!										78 000E											•									90.11.11	[ - 4	PC-SS-20	9 34 16
		!									•	•											•					•				11-11-11		IC-SS-21	4 3116
				14: P							;	re 09f																				11-11	6-4	BC-SS-22	9 24 6
1200					1100	646	960			<b>8</b> 56		1 000			13066													70 J				11.11		DC-SS-23	3110
	*****	10000 1	•	_	•					55(6) J											•											11.11		DC-SS-24	• 111
	1500 1				£400 J		7100 J			7 0006	£700 J				19000																•	11.11		DC-85-25 1	A 1115
											4200 1																				:	11.11			\$172 <b>•</b>
				!	270 J							1.0 P.	;	180 J																		11,11	7-4	DC-SS-27	3111.6
					-						•	_		180 J	77.166								:								}	11.11		DC-55-28	2176

	SITE	BITE	OITE T	SITE 6	SITE 0	BILE &	SIIE 8	BIIE 0	SITE	SIIE 6	SITE O	SITE &	SITE &	9 3115	SITEG	SITE
	SAMPLE MUMBER	BC-85-29	AC-65-30	BC-55-31 #	BC-SS-32	DC-55-33	DC-SS-34	DC-SS-35	BC-SS-34	BC-SS-37	DC-SS-30	DC-SS-39	DC-SS-40	PC-SS-41	DC-SS-42	DC-SS-
	ALAS/MOITAGOJ	A-5	9-5	D-5	C-5	1-5	E-2	F-5	6-5	H-5	A-6	1-6	C-6	D-6	F-6	9-7
	BATE SAMPLEB	11-11-86	11-11-86	11-11-06	11-12-86	11-12-84	11-12-84	11-12-06	11-12-06	11-12-06	11-12-66	11-12-86	11-12-86	11-12-86	11-12-66	11-12
	1 Bisethyl Phthalate			* ***									•		-	
	2 Acenaphtylene															
	3 3-Mitrosolline															
	4 Acenaphthene		• •	• •					200 J							7
	5 2,4-Binitrophenal															
	4 4-Hitrophenol												1006000			
	7 Bibenzofuran							~~···	95 J							4
	8 2,4-Dinitrotoluene															
	7 2,6-Dinitrotalume															
	10 Biethylphthalate	• • •			-											
	11 4-Chlorophonyl-Phonylether															
	12 fluorene					•					•					ı
	13 "4-Mitfeamiline															
	14 4,4-Binitro-2-octhylphonol															
	13 H-Hilrosodiphenylanine															
	16 4-Branaphenyl-phenylether															
	17 Hexachiorobenzene															
	18 Pentachlorophenol						9900 J		1400 J			21000000	1100 J		20000	250
	19 Phenanthrene								2800	4700 J		-	920-J	· · · · · · · · · · · · · · · · · · ·		- 150
	70 Anthracene								400	*****			810 J			40
	21 Bi-a-butyl phthalate												880 3			- 1
	22 Fluoranthene							· · · ·	4600				2600			700
	23 Pyrene								3100		5869 J		2400			
	24 Butyl Benzyl phthalate								2100		3800 3		2400			196
	25 3,3'-Bichlorobenzidine															
	26 Benza(a)Anthracene								2100							
	27 bis(2-ethylhesyl) phthalat	2966 J				1400 J			7100				1400 J			100
	20 Chrysene					1100 3							2500			
	F *								2706		8400 J		2500			100
	29 Di-n-octyl phthalate					2006 BJ							_			
<del>-</del>	30 Denzoib) Fluoranthene	· · · · · · · · · · · · · · · · · · ·							1800				3400			15
	31 Benzo(k)Fluoranthene														750 1	
	32 Benzo(a)Pyrone								1900		1900 J	3900 J	1700 J		180 J	76
	33 Indeno(1,2,3-cd)Pyrene								1700				2109			57
	34 Denzalg, h. i)Perylene								550 J				530 J			15
	35 Bibenz(a,h)Anthracene								1500				2400			54

Surface Soil Searvolatiles

LICATION/RIB  BATE SAMPLE  INCATION/RIB  BATE SAMPLE  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acmaphicate  Acm	20 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	26 - 58 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 46 - 11 - 13 - 13 - 13 - 13 - 13 - 13 - 1	MC-58-47	11-13-84 11-13-84	
MIE SAWEE  Disctity! Pathalate  Accessity!ose		<b>#</b>	#-12-# 	•	
bisethyl Phthalate  Kensphylese  J-Hitrosailise  A-Baitroshesi  H-Baitroshesi  J-Baitroshesi  J-Baitroshesi  Bibentefura  J-Baitrotaluse  J-Baitrotaluse  H-Bistrotaluse  Biethylphhalate  J-Baitrotalise  H-Bitrosadilae  J-Baitrosalise  H-Bitrosadishaylabes  H-Bitrosadishaylabes  Friatloruphenyl-phenylether  H-Bitrosadishaylabes  Friatloruphenyl-phenylether  H-Bitrosadishaylabes  Friatloruphenyl-phenylether  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitrosadishaylabes  H-Bitros					
kensphylone 3-niteaniline kensphylone 2,4-Binitropheni 4-Binitropheni Bibenzefura 2,4-Binitrotolume 1,4-Binitrotolume Bibethylopheni 1,6-Binitro-2-mthyloheni 1-Hitroadiline 1,6-Binitro-2-mthyloheni 1-Hitroadiphenilene 1,6-Binitro-2-mthyloheni 1-Hitroadiphenilene 1,6-Binitro-2-mthyloheni 1-Hitroadiphenilene 1,6-Binitro-2-mthyloheni 1,6-Binitro-2-mthyloheni 1,6-Binitro-2-mthyloheni 1,6-Binitro-2-mthyloheni 1,7-Binitro-2-mthyloheni 1,7-Binitro-2			; :		
1-Hitteanillee Acaaphbae A-Daitropheol -Hittepheol Bibenzefura 2,4-Biatrotolume 2,4-Biatrotolume Bibenzefura 2,4-Biatrotolume Beithvildhalste -Chleropheol-Phenylether Fluctae 1,5-Biatro-2-mthylpheol Hitteadillee -Hitteadillee -Lincapheol-Phenylether Heachleropheol -Broad-phenylether Heachleropheol -Phenathree Anthrace Buyl Benzyl phthalate Ji3-Bichlerobheol Bin-a-thyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Benzyl phthalate -Buyl Ben			÷		
Kenaphtees  2,4-Baitropheol Bibanafura  2,4-Baitratoluma  2,4-Baitratoluma  2,4-Baitratoluma  1,6-Baitropheol Bibthiphhalate Chicopheol Fluctos Birtosadipheol Fluctosadipheol			# · · · · · · · · · · · · · · · · · · ·		
7, "Bairrephenol -Hitrophenol Bibenzefura 2, 4-Bairretalume 2, 4-Bairretalume Biethviphthalate -Lhicrophenyl-Phenylether Flucrae 4, 6-Bairretalume Hitrosodiphenyl-phenylether Fritchlorablane Chiachlorabenzee Fritchlorabenzee Fritchlorabenzee Fritchlorabenzee Fritchlorabenzee Fritchlorabenzee Fritchlorabenzee Bultyl phthalate 7, 3-Bichlorabenzee Bultyl benyl phthalate 5, 3-Bichlorabenzee Bultyl benyl phthalate Fritchlorabenzee bung			:		
f-Nitophenol Bibansfura 2,4-Biaitrolaume 2,4-Biaitrolaume Biethvipalkalato 4-Biaitrolaume 1,4-Biaitrolaume 1,4-Biaitro-2-methylphenol 1,4-Biaitro-2-methylphenol 1,4-Biaitro-2-methylphenol 1,4-Biaitro-2-methylphenol 1,4-Biaitro-2-methylphenol 1,4-Biaitrolamane 1,5-mathrone 1,5-mathrone 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolamane 1,5-Biaitrolam			: :		
Bibenseferas 2,4-Bastretaluma 2,4-Bastretaluma Bib-Bastretaluma 1,4-Bastretaluma 1,4-Bastre-Zastrylphenel 1,4-Bastre-Zastrylphenel 1,4-Bastre-Zastrylphenel 1,4-Bastre-Zastrylphenel 1,4-Bastre-Zastrylphenel 1,4-Bastre-Zastrylphenel 1,5-Bastre-Zastrylphenel 1,5-Bastre-Zast			:		
2,4-Baitretelume 2,4-Baitretelume 1,4-Baitretelume 1,4-Baitretelume 1-Chlorophenyl-Phenylether 1-Bitresadilad 1,5-Baitre-2-methylphenel 1-Bitresadilad 1,5-Baitre-2-methylphenel 1-Bitresadilad 1,5-Baitre-2-methylphenel 1,5-Baitre-2-methylphenel 1,5-Baitre-2-methylphenel 1,5-Baitre-2-methylphenel 1,5-Baitre-2-methylphenel 1,5-Baitre-2-methylphenel 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidian 1,5-Bitale-abenidi			:		
2,4-Binitrataluma Bicihriphibalato -Chlorophenyl-henylether Fluorene -(-Bitradillad(-Bitradillad(-Broasphenyl-phenylether Hitrosodishenylether Henathrene Henathrene Mathraene Bi-n-butyl phthalate Bi-n-butyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene Butyl benyl phthalate Fyrene			:		
Biethriphthalate  4-Chlorophenyl-Phenylether  Flucres  Flucres			:		
fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese fluorese flu			:		
fluctor  (4,6-Battre-2-sethjphenol  (4,6-Battre-2-sethjphenol  (4,6-Battre-2-sethjphenol  (4,10-casphenyl-phenylether  (4,10-casphenyl-phenylether  (4,10-casphenyl-phenylether  (4,10-casphenyl-phenylether  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,10-casphenol  (4,1			:		
1-Nitreadiling 4,6-Binitre-2-enthylphenel 1-Nitreadiphenylphenel 1-Nitreadiphenylphenel 1-Nitreadiphenylphenylither 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitreadiphenel 1-Nitread			;		
4, 6-Bisitre-2-ethylphenel Bit cosediphen leaine C-Brossphayl-phenylether Herschloropenel Presathrene Mathracene Mathracene Bit-achyl phthalate Fyrene Butyl Benyl phthalate Fyrene Butyl Benyl phthalate Fyrene Butyl Benyl phthalate Fyrene Butyl Benyl phthalate Fyrene Butyl Benyl phthalate Fyrene Butyl Benyl phthalate Fyrene Butyl Benyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Forencial Mathracene Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phthalate Busyl phth		:			
Histossablayl-phaylether herachlorabearene fentachlorophani Phenathrene mathracene mathracene finanthrene mathracene phenathrene mathracene mathracene mathracene mathracene mathracene fluoranthene fluoranthene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene mathracene					; ; ;
1-Droaphery   phenylether   Peratachlorabearee   Peratachlorabearee   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attraces   Attrace					
Perachlorabeacee Festachlorabeacee Festachlorabeach Astracee Bin-butyl pathalate Front Andreasee Front Pennyl pathalate 3,3°-Bichlorabeachdine Bust ethylbeach Bust ethylbeach Bust ethylbeach Bust ethylbeach Bust ethylbeach		i			
Featacticropenoi Phenauthrese Anthraces Bi-a-bulyi phthaiate Fluorathese Bulyi Benyi phthaiate 3,3°-Bichlerabenzidise Bunicialmithracese Bisi2-ethylbenyi) phthaiate Chysese Benackyi phthaiate Chysese Benackyi phthaiate Chysese Benackyi phthaiate Chysese Benackyi phthaiate		i			
Phenauthrese Anthracese Dissibility phthalate Fluorathese Dayl Berryl phthalate 3,3 * Bichleraberidies Berrolalfathracese Bist2* ethylberyl) phthalate Chyssee Berrolalfathracese Bist2* ethylberyl) phthalate Chyssee Berrolalfathracese					
Authracene  Di-n-butyl phthalate  Fluorasthene  Pyrene  Myl Benyl phthalate  J.JBichlerobenzidine  Dennolalathracene  Mysi2-cthylbenyl phthalate  Livysee  By-n-octyl phthalate  By-n-octyl phthalate  Bootstabiloorasthene					
Eine-butyl phthalate 130 Fluoranthene Pyrene Butyl Benzyl phthalate 7,3'-Bithlerobenzidine Benzylahatwacene 2,3'-Bithlerobenzidine Benzylahatwacene 2,5'-Bithlerobenzidine Benzylahatwacene Benzylahatwacene Benzylahatwacene					
Fluoranthene Pyrene Butyl Benzyl phthalate J.JBithlerobenzidine Benzulalantweene Bist2-ethylbenyll phthalate Livysee Bin-ectyl phthalate Benzulalite	1500	001	230 J		
Pyrene Butyl Benzyl phthalate J.3Bithlorobenzidine Benzulalaturenene alst2-ethylbenyll pathalate Chrysene benzulatirenenenenenenenenenenenenenenenenenenen					ı
Butyl Benzyl phthalate  3,3Bichlerobenzidine  Benzolajhathezene  Bist2-ethylbezyll phthalate  Chrysene  Benzolajfathezene  Benzolajfunzastbane  Benzolajfunzastbane					
T,3bichlorobenzidine  BenotalAnthocene  Bis(2-chylbenyl) phihatate  Chrysene  Benotalathocene  Benotalathocene  Benotalathocene					
Denzo(a)Anthracene bis(2-ethylbery)) phihalate [Drysene bin-ecyl) phihalate besze(a)[bankalate fenze(a)[bankalate		!	•		
bis(2-ethylbesyl) palhalate Chrysene Bm-ectyl palhalate Impocable luxrathene					
Chrysene By-n-octyl patholote Seczethsflugrathene		- 2 2			
Di-m-octyl phthalate Seczothifluoraethene	i				
feeze(b)f lueraethene	2 52				
_		:	:		
-					
=					
-					:
_					

COATHINGSHIP   C-1   S-1   N-2   E-2   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N-7   N	STE'S STE'S STE'S STE'S STE'S STE'S STE'S STE'S STE'S STE'S STE'S STE'S	SITE 6 STIE 6 S
### ### ### ### ### ### ### ### ### ##		
Mgha-MCC		
Injah-RC	86	11-11-86 11-11-96 1
3	THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF T	
4 Suear-NEC Litefand 3 Heyitchior Ephide 6 Georal Tan   7 Heytechior Ephide 8 Georal Tan   9 Siniferia 10 4,4"-BBC		
\$ \$ \$asas M. (Lindan) \$ teptachier \$ A   Aisras 7   Replachier Epolide 8   Cessul Na   9   Sindrin 10   4,4"-980   31 3 79 31 290   24 11   Endra 12   Cessul Na   13   4,0"-980   44 13   4,0"-980   14   Cansestina initate 13   4,0"-980   15   Methosychiar 17   Canira Estane 19   Tanaphane 20   AMOLIGA-1201 21   AMOLIGA-1221 22   AMOLIGA-1222 23   AMOLIGA-1222 24   AMOLIGA-1224 25   AMOLIGA-1224 26   AMOLIGA-1224 27   AMOLIGA-1224 28   AMOLIGA-1224 29   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 21   AMOLIGA-1224 22   AMOLIGA-1224 23   AMOLIGA-1224 24   AMOLIGA-1224 25   AMOLIGA-1224 26   AMOLIGA-1224 27   AMOLIGA-1224 28   AMOLIGA-1224 29   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 21   AMOLIGA-1224 22   AMOLIGA-1224 23   AMOLIGA-1224 24   AMOLIGA-1224 25   AMOLIGA-1224 26   AMOLIGA-1224 27   AMOLIGA-1224 28   AMOLIGA-1224 29   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 21   AMOLIGA-1224 22   AMOLIGA-1224 23   AMOLIGA-1224 24   AMOLIGA-1224 25   AMOLIGA-1224 26   AMOLIGA-1224 27   AMOLIGA-1224 28   AMOLIGA-1224 29   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 21   AMOLIGA-1224 22   AMOLIGA-1224 23   AMOLIGA-1224 24   AMOLIGA-1224 25   AMOLIGA-1224 26   AMOLIGA-1224 27   AMOLIGA-1224 28   AMOLIGA-1224 29   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 21   AMOLIGA-1224 21   AMOLIGA-1224 21   AMOLIGA-1224 22   AMOLIGA-1224 23   AMOLIGA-1224 24   AMOLIGA-1224 25   AMOLIGA-1224 26   AMOLIGA-1224 27   AMOLIGA-1224 27   AMOLIGA-1224 28   AMOLIGA-1224 28   AMOLIGA-1224 29   AMOLIGA-1224 29   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 21   AMOLIGA-1224 21   AMOLIGA-1224 21   AMOLIGA-1224 22   AMOLIGA-1224 23   AMOLIGA-1224 24   AMOLIGA-1224 25   AMOLIGA-1224 26   AMOLIGA-1224 27   AMOLIGA-1224 28   AMOLIGA-1224 28   AMOLIGA-1224 29   AMOLIGA-1224 29   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLIGA-1224 20   AMOLI		
A Alaria 7 Replacher Equide 8 Edeculina 1		
Replacifier Epolide		
# Edward   # Paraldrin # Paraldrin # 10 4,4*-NeC # 11 Endran # 12 Edward   # 11 Endran # 12 Edward   # 13 4,4*-NeO # 14 Edward   # 14 - NeO # 14 Edward   # 15 4,4*-NeO # 14 Edward   # 16 Netward   # 17 Endran Retone # 19 Tanaphone # 20 ANDCLON-1016 # 21 ANDCLON-1212 # 27 ANDCLON-1222 # ANDCLON-1224 # ANDCLON-1242 # ANDCLON-1242 # ANDCLON-1242 # ANDCLON-1244 # ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246 # 275 ANDCLON-1246	Control to the second of the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control to the control	
18 4,4-98C 31 J 74 51 240 84  11 Endrin 1  12 Edosulfan II  13 4,4-98G 4 60sulfan Guitate 13 4,5-98I  14 Indonulfan Guitate 13 4,5-98I  15 Rethesychlar 17 Endrin Extane 18 Chiardane 19 Tanaphene 20 ANDCLOM-1016 21 ANDCLOM-1221 22 ANDCLOM-1232 23 ANDCLOM-1242 24 ANDCLOM-1242 24 ANDCLOM-1242 25 ANDCLOM-1246 26 ANDCLOM-1246 27 ANDCLOM-1246 28 ANDCLOM-1246 29 ANDCLOM-1246 30 ANDCLOM-1246 31 ANDCLOM-1246 31 ANDCLOM-1246 32 ANDCLOM-1246 33 ANDCLOM-1246 34 ANDCLOM-1246 35 ANDCLOM-1246 36 ANDCLOM-1246 37 ANDCLOM-1246 38 ANDCLOM-1246 38 ANDCLOM-1246 39 ANDCLOM-1246 410 2400000 C 174000 C 155000 J 887000		
11 Eddrin 12 Edoualfan III 13 4,4-000 14 Endonalfan Guifate 15 4,8-001 15 Bethasyskler 17 Endrin Ketone 19 Chiordane 19 Tausphene 20 ANDCLON-1221 27 ANDCLON-1222 24 ANDCLON-1222 25 ANDCLON-1224 26 ANDCLON-1246 27 ANDCLON-1246 28 ANDCLON-1246 29 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 28 ANDCLON-1246 27 ANDCLON-1246 28 ANDCLON-1246 28 ANDCLON-1246 29 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 22 ANDCLON-1246 23 ANDCLON-1246 24 ANDCLON-1246 25 ANDCLON-1246 26 ANDCLON-1246 27 ANDCLON-1246 28 ANDCLON-1246 29 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 22 ANDCLON-1246 23 ANDCLON-1246 24 ANDCLON-1246 25 ANDCLON-1246 26 ANDCLON-1246 27 ANDCLON-1246 28 ANDCLON-1246 27 ANDCLON-1246 28 ANDCLON-1246 28 ANDCLON-1246 29 ANDCLON-1246 29 ANDCLON-1246 20 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 21 ANDCLON-1246 22 ANDCLON-1246 23 ANDCLON-1246 24 ANDCLON-1246 25 ANDCLON-1246 26 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1246 27 ANDCLON-1		
12   Edesulfan   13   1,4 - 108	31 J 77 77 210 84	
13		
14 Endouglifan Guifate 15 4,4-1881 16 Nethosychlor 17 Endria Ectone 19 Chiordane 19 Tauaphene 20 ARGCLOR-1016 21 ARGCLOR-1212 27 ARGCLOR-1222 28 ARGCLOR-1242 24 ARGCLOR-1242 24 ARGCLOR-1248 2736000 C 44006 2400000 C 25 ARGCLOR-1256 450 751 990 748 3800 1830 2100000 C 174000 C 185000 J 887000	•	
15 4,4"-881 16 Retharychlor 17 Endrin Ketone 18 Chlordone 19 Tassphene 20 ARDCL08-1816 21 ARDCL08-1821 22 ARDCL08-1822 23 ARDCL08-1822 24 ARDCL08-1248 2730400 C 44000 24000000 C 25 ARDCL08-1236 26 ARDCL08-1246 3800 1839 21000000 C 174000 C 165000 J 887000		
16 Methasychlor   17 Endria Ketone   19 Chlordane   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene   19 Taxaphene		
	to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	
19 Talaphene 20 ARDCLOR-1016 21 ARDCLOR-1221 22 ARDCLOR-1232 23 ARDCLOR-1242 24 ARDCLOR-1248 2730000 C 44006 24000000 C 28 ARDCLOR-1266 450 751 990 740 3800 1830 21000000 C 174000 C 165000 J 887000		
19   Turaphene   20   ANDCLOR-1016   21   ANDCLOR-1221   22   ANDCLOR-1232   23   AADCLOR-1242   2730000 C   44000   24000000 C   2400000 C   25   ANDCLOR-1248   2730000 C   2400000 C   2400000 C   25   ANDCLOR-1260   430   751   990   740   3800   1839   21000000 C   174000 C   165000 J   887000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   24000000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2400000 C   2		
20 AROCLOR-1016 21 AROCLOR-1221 22 AROCLOR-1732 23 AROCLOR-1247 24 AROCLOR-1248 2736000 C 44006 24000000 C 28 AROCLOR-1248 1430 2900000 C 28 AROCLOR-1248 450 751 990 740 3000 1830 21000000 C 174000 C 165000 J 887000		والمستسيان والمالي
2730000 C 44000 24000000 C 2730000 C 44000 24000000 C 29 MADCLOR-1258 1430 2900000 C 26 MADCLOR-1268 155000 J 887000		
23 AAGCLOR-1242 24 AAGCLOR-1248 2730000 C 44000 24000000 C 25 AAGCLOR-1234 26 AAGCLOR-1240 450 751 998 748 3800 1830 21000000 C 174000 C 165000 J 887000		
2730000 C 44000 24000000 C 25 ARRICLIM-1238 1430 2900000 C 26 ARRICLIM-1240 450 751 990 740 3800 1830 21000000 C 174000 C 165000 J 887000	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
29 AROCL OR-1246 150 751 990 740 3800 1830 21000000 C 174000 C 165000 J 887000		
26 ARDCLOR-1266 450 751 990 746 3800 1830 21000000 C 174000 C 165000 J 887000		
	430 751 990 746 3800 1830 21000000 C 174000 C	165000 J 887000
		<del>_</del>
	,	
=	The second section is the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	
<b>&gt;</b>		
	=	

_

•

_

. ..

.

•

1434/1194	\$1105	201,105

ILES	3115	9 3115	8 31.18 .	2 3115	9 3115.	8.3115		1111	8 3118	9 3115	9 3115	\$ 3115	0 3115	9 3115	M VIIX	đ
	Banus 31968	9C-88-21 0		90-68-13	PC-55-36	9C-82-22	96-55-39	0C-88-33	DC-22-20	6C-88-34	07-55-30	19-55-00	2>-55-30	\$1-55-30	• +>-55-36	
	00CV110N/6W18	90-11-11 5-0	11-15-00 C-2	11-15-09 0-2	11-13-09 E-2	11-15-89 L-2	11-13-8P P-3	11-13-89 N-2	11-15-01 7-V	11-13-89 8- <b>9</b>	11-13-89 C-9	11-15-09 0-9	11-13-8P E-f	11-13-89 <b>1</b> -1	48-21-11	
.V t													:		·	
	346-916															
	396-19140 I							. •						•		
	(anabai)) MG-sassa) i Mastachior															
	Heptachlor Aldrin															
	Hoptachlor Sporide															
	l mattureb3 (															
	914,-002   014]9110															
	utupug 3006'b (															
	li matturab3															
	060)'h				-								•			
	stating matimachas															
	(*t90i															
	Helboxychlor					,										
	Endrin Kelone Endrin Kelone							•								
	- Tonahenet									-		• .			<del></del>	-
	9101-WOCCOW-1019															
	VB0CF08-1551															
	: VMOCFON-1545 : VMOCFOM-1525															
	9 KEC 101-1340															
44 47												57700 1		13000		

Surface Souls Pest/PCDs

	SIIE	1 3110	6 116 3	. S11E J	
	SAMPLE MUNION LOCATION/GRID	3-32-32 32-32-32 33-32-32-32-32-32-32-32-32-32-32-32-32-3	BC-55-47 ME	00-65-40 MF	
	PATE SAMPLED	91-21-11	71-11- 11-13-18	<b>11</b> -13- <b>11</b>	
	Alpa-MC		:		
~	Peta-MC				
	Pelta-BEC				
• •	Gaeas-WC (Lindans)				
^ <	Mercalor				
	Manhablan Con-Cha	:		-	:
•	Meptachior aparion				
•	Distant.				
• •	4 4'-000				
= =	,				
: ::	Edesaltas II				
<b>2</b>	<b>3</b>				:
=	Endosulfan Sulfate				
5	191'1				
=	. Methosychlor				
=	Endrin Ketene				
#	Chlordane				
11	Toraphene		:		į
2	AMBCL DR-1016				
12	AA0CL 08-1221				
22	AROCL 08-1772		•		
2	. AMDCL OR-1242				
\$2	AROCI OR-1248				
23	MOCL 68-1254	!			!
*	AMDCL DR-1269				

		SITE	SITE 6	BITE B	SITE 6	. SIJE . C	ZILE E	SITE 6	RITE 6	SITE 6	SITE G	SITE G	2 3112	SITE 6	SITE 6	5116 6
		SAMPLE MUMBER	DC-88-01	DC-55-02	DC-55-03	BC-SS-04	BC-58-05	BC-88-04	BC-SS-07	MC-55-08	DC-SS-09	DC-SS-10	DC-SS-11	DC-SS-17	DC-SS-13	DC-SS-14
		LOCATION/GRIB	C-I	6-1	1-2	€-7	N-2	. N-5		1-5	A-3	0-3	C-3	8-3	[-;	F-3
		BATE SAMPLED	11-10-86	11-10-04	11-11-86	11-11-06	11-11-96	11-11-04	11-11-04	11-11-04	11-11-04	11-11-06	11-11-04	11-11-86	11-11-06	11-11-66
	_	Aluainua . Antimony	11404	10700	7826	1470	12200	16500	7410	5950	7270	7880	2790	23300	4780	4710
		Arsenic	4.0 A	4.9 R	5.7 R	5.8 A	5.0	5.7 R	7.5	5.6 R	13 R	5.4 B	5.4 R	26 A	12 A	2 R
•		Bartun Deryiliun	143	174	151	145	233 -	254	207	136	12600	\$75	20200	7340	143000	<b>\$</b> 7300
		Boron						, 							_	
		Cadelwa	7.6	2.4	1.0-	1.7	4.3				. 10	4.4	4.5	8.1		4
		Chronium, trivalent	16	15	12	14	21	22	17	. 11	119	52	39	44	24	52
		Cobalt	4.2	7.8	4.4	6.4	1	9.3	• · · · <del>- • • •</del>	5.4	15	8.5	12 497	13	89	2)
		Copper	377	344	167	245	392	577	77770	675	1200	260		1430	524	483
	-	lron	19000	20300	15700	17400	25900	27600	20300	13900	30400	18000	29800	15000	22200	22 <b>4</b> 00
		Lead	103 1	134 1	41	99 1	232 1	230 8	514 1	131 1	455 1	334*4	414 1	711 1	310 1	2950 1
		Ranganèse		293	200	254 .	324	390	291	717		171	76	150	129	191
		Hercury	4.16	0.23	4=	22	0.11 35	33	24		4.4 340	1.3 84	1.7 41	14 3 <b>0</b> 2	2 62	7.4 48
		Hickel '	22	25	18	. 22	23				360	**	•1	201	•2	**
		Selenius									4.2	5				
		Silver									4.2	,				
		Thallaus						<del></del>								
		Tin Vanadium	25	26	26	23	25	38	22	14	139	31	75	129	29	46
	_	Sinc	299	104	190	201	617	413	175	354	4580	5130	794	23900	8110	1840
		Eyanide Eyanide	277			441	•,				1300	31.70	4.8	3,3	2	2.8
	22	Chause											****	3.5	•	
- <b></b>																

•	2
4	7

. ::			$\iota$ n	£.1	ľľ	. 2.2	1:1						11	Cyanide	
2580	4250	9774	41400	25500	34500	9917	+18	00(7)	4.5	35100	2100	12790	33800	Jail	-
SL	65	801	\$L	17	991	1)	47	30	14400	\$2	112	001	122	ausbensv	
			91		-				192			15			
									12					antlisal	
		88 C.E	3.4 81	2'3 81	22			ε.ε			1.4	4.6	4.4	Silver	
									2			-		Seleniua	
1 98	34.1	1 09	132 1	1 507	96	22	25	24	18	42	LO	601	133	Hickel	-
2	92	911	1.13	1.02	11	r.s	£	, 312	13	<b>12.0</b>	4.4	0.6	3.2	Nercury '	
247 AE	324 KE	259 86 .	304 81	784 KE	70800	812			332	142	224	14	OLL	Senagand?	•••
8 2 7 8	1 011	1 085	421 4	f. 81)	1 00/11	1 762	1 (8)	1 0/91	392	1 (92	0 0491	1 0171	1240 1	peay	• •
1 00955	1 00/85	22800 1	1 00242	1 60845	39900	004ST	22700	52800	<b>90789</b>	00871	00071	100000	000\$£	Aevi	
0880	817	1050	1 800	1480	1430	181	!!!		429	742	114 .	1620	0/1Z	robber.	-
[8:2]	15.23	{2.4}	{0.2}		24	81	13	£*\$	\$.£	\$1	£.T	11	11	114403	
18 Se	33 BB	123 KB	1M OC	18 16	8)	18	**	34	10	<i>1</i> 21	99	96	<b>Z</b> \$1	Chrosins, trivalent	-
18 S.C =	.21 12	1¥ 17	IN OZ	17 At		L'I	\$		01	<b>l</b> `l					
														901.00	
<b>*</b> 11														Peryllium	_
0001	0711	2140	2220	<b>P</b> 250	1210	14200				. 12400	09\$1		1111	Arsensc Barlus	•
£ 11	1 01	1 11	3 + 2	24 1	33 8	33 W	14 8	N 01	W LS	# 17	33 W	1 60	# 95 14	Antinony Accori	-
				****		****		****	***	4441	4194	4414	0747	. austauli	-
14400	2010	17200	9330	07##	4950	0669	0149	AUA	0411	9381	MM	#413	KIGI	· · · · · · · · · · · · · · · · · · ·	
00 11 11	98-11-11	98-11-11	90-11-11	98-11-11	90-11-11	10-11-11	98-11-11	90-11-11	11-11-89	98-11-11	98-11-11	18-11-11	98-11-11	<b>0374NVS</b> 31 <b>V</b> 0	
98-11-11		70-11-11 1-H	1-11-07 1-9		70-11-11 1-d					)-Y	H-2	6-3	6-2	#1W9/W011V00	
1-6	, b-1		_	1-9 1-7 m	_	PC-55-33	DC-82-31	92-55-34	61-55-36	81-55-36	£1-55-36		\$1-\$5-3 <b>0</b>	#34MUR 3 JANA2	
DC-22-38	12-55-30	96-55-36	1 52-55-36	PC-22-34	56-58-33	££.22-74	17-22-74	AE-22-74	91-33-34	21.22.78	11.22.74	, 11-35-76	J1-22-14	#3#min 3 idnes	

---

/	1	81			FT	1.7					· · · · · —				apiety3	-	
120	5290	28000	4320	0991	324	4150	9667	31300	15000	14400	9481	30700	90814	2086	Jail	. •	
ļ .	990	<i>t</i> T	33	150	12	110	123	28	115	91	20	435	186	11	ausbeatv		
			и	<i>L</i> 1	71	. 81							ZL		~. all		-
															Autliadi	•	
1	14 2	3.9 Rt	19 61	18 9.4			1A 9.B			18 179	19 5.2		3.6 At		311461		
			1.3	4.1		174									Selenium		
	1 311	20 1	1 01	1 451	32 1	32 1	1 56	1 \$1	1 12		1 45	12 1	1 25	1 111	Michel.	•	
2	Ş	1.2	2.2	2.9	40.0	£	\$	2.2	ζ `	<b>7.0</b>	19.0	81	52	44.4	Yausiel.		
		L	IN TEA	142 41		18 75L		_10_201	-11411	12.66	19 161		_#.KL	"38 ET"" "	" Benalgaeff	•••	-
22	1 111	1 91¢	100161	125 1	. 1 001	1 156	1 687	303 1	219 1	4 (1)	1 0(21	525 #	1 105	13 P R1	praj	• •	
LLT	1 00592	19200 1	1 00187	35000 1	1 08/6	22400 €	1 00182	32400 1	1 90171	12400 1	005/1	05450	21000 1	15 900 BE	1001		
£	0601	1210	0991	1040	122	3360	2200	115		945	. 1450		258.	. 40	Copper	-	-
}	[01]	{4.4}	[91]	{2.4}	(20)	[6'5]	[1.9]	12.43	{15}		(0.1)		(2.2)	[81]	Coball	-	
	21 88	20 KI	18 401	27 41	19 61	45 81	18 41	28 83	34 10	10 11	21 40	11 15	14 K		Chronius, trivolent	-	
I	12 81	. 13 T'#	38 92	18 7.9	2 88	18 17 .	18.51	_111_5:	- 11 6.4		. 14.174	.4.41		. W. L	Foron	-	• •
															Beryllue	-	
21	0941	2310	0141	08++	18200	2010	. 0541	222	4504	1210	_1260	4671	OCET	9145		_	
	1 21	8 21	4 81	£ (1	1 1.1	1 5.2	1 7 1	1 91	1 SZ	1 91	. 1918	\$ \$4	1 10	1 01	Arsenic		
	• • •	• • •	81	91	• • •	• • •	• , •	•	• 10	61	• , •	* **	• ••		Augettuy	ί	
768	2240	10200	0196	0681	5720	1290	9219	5820	02/5		12700	06/1	5462	14209	auniaula	T.	
						*****											
71-15	11-15-69	11-13-89	11-15-07	11-15-89	11-15-89	11-15-89	11-15-09	11-15-09	11-13-09	11-15-86	11-15-89	98-11-11	98-11-11	98-11-11	6314NA2 31A6		
1.6	9.3		1-0			\$-H	5-9					5-1	S-#	\$- <b>¥</b>	#1 W5/W011V307		
·\$\$-3 <b>q</b>	21-55-30						95-55-36			PC-22-22	DC-22-35	1 10-55-31	PC-88-30	62-55-36	N36NUN 319NAS		

201416 201] | 10161911

•

•							
			•	شر			
			<b></b>				
						ep i wekin	22
	24	79	59	291	<b>0</b> £1	2012	31
				LL	41	authent.	92
							41
						anilisa)	<b>8</b> 1
						2019461	11
						eninalag	
	1 115	220 t	1 45	91	1 51	[943iff	
			10.0	••	• ••	Mercury	• -
	. 1620 KB	_11 001Z		185	229 81_	asaurbury	• •
	29 1	1 [[	24.1	1 07	1 07	ptay	
	301000	542000 1	1 25200 1	17,500	12400 1	, mext	_
	[617]		. 122	2L	. 22	_ addec	
	(12)	(61)		4')	" (1 ⁻ 6)	114403	
	18 005	18 667	152 81	\$1	18 11	Chronius, trivalent	_
	18 A'A	12 81	41 212		11 6'1	enjepej	-
						90100	
						Beryllium	c
	. 12	52	217	259		Beriam	·
	1 1'7	B 1'6	9.3 1	V L		21481.2Y	1
•						Auge ( ) uy	Z
	159	920	010)	4514	226	- nuisula	1
	11-12-09	11-12-89	11-12-89	11-11-09	11-12-09	0314WA2 31A0	
	311	3N	35			FOCV110N\6619	
	181-55-30	17-SS-30	99-55-34	+\$1-55-36	+++-55-36	#3dwn# 31dWVS	
	. 1.3115				# VIIIK	3115	

314691341 1102 43611W

てわわ

SIIE	SITE N	SITE H	STIE H	SIIE	1115	E 2178	Ĭ	H 3115	# 3119	# 1115	2115	SITE N	2116	SITE 1	2116
SAMPLE MUNDER SAMPLE DEPTH DATE SAMPLED	DC-H1-14 15'-25' 17-18-86	BC-N1-15 35'-50' 12:18-87	BC-N2-16 \$'-20' 1-5-07	DC-H3-17 10'-20' 1-6:87	DC-N3-19 6 10'-20' 1-6-97	BC-84-19 .10*-25* 1-6-07	BC-MB-20 + 1-7-87	DC-N5-21 0-10' 1-7-67	DC-146-22 357-507 1-8-87	BC-H7-23 351-501 1-8-87	DE-HB-24 5'-15' 1-9-87	DC-H9-28 151-251 1-13-07	DC-11-38 0-10* 1-27-67	00-12-39 51-25 11-28-67	BC-13-40 ST 15: 11-5-47
1 Chlorosethane 2 Broscaethane 3 Vinyl Chloride A Chlorothane		:	; ;				<b>;</b>								
5 Methylene Chloride 6 Aceton	7099	13 2	13137 5	52 8	30 5	\$5400 B	5 \$	8 5	32 6	98 65	4 5 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6	[H] 4 34 4(2)	14 cars	2160 F	# 6754 # 67941
	,	; ;				1					<b>.</b>				
10 trans-1,2-Dichloroethene 11 Chlorofora 12 1-2-Bichloroethane				192	\$\$										
	19461		27180 8			23020				n		26 9	2962	10550 B	16420 8
				7 01											
	06219		22650	256	11	22240			61				f (A)	\$970	
25 2-Chloroethyl Vinyl Ether 26 Bromofors 27 4-Methyl-2-pentanone		:	7852	909 E	<b>3</b>	: : : !	<b>3</b>		•						
	2845				•									\$265	f <b>#</b> } . T
		28	11174	307	:: ::	12788							658 J	7425 13500	677 RJ 126900
34 Styrese 35 Total Lylenes	1935		1 0161			23630							1918c	3375	

## Subsurface Soils Volatiles

		SITE	SITE 1	SITE T	SITE I	BL ANK	SILE	stre 1	site 1	SITE I	SITE I	SITE I	SITE I	SITE I	SITE I	EILE I	SITE J
		SAMPLE MUMBER SAMPLE BEPTH BATE SAMPLEB	9C-15-41 5'-27.5' 1-30-07	BC-15-42 201-381 1-30-87	DC-16-43 10'-25' 2-2-07	9C-19-44 2-3-87	9C-17-45 3.5'-12.5' 2-3-87	9C-17-46 13'-23' 2-3-07	DC-17-47 8 13'-23' 2-3-07	BC-19-48 6'-23' 2-4-87	DC-19-49 241-301 2-4-87	DC-110-50 15'-30' 2-4-87	9C-111-51 6'-20' 2-5-87	8C-111-52 26'-39" 2-5-87	DE-112-57 3.51-17.51 2-13-07	DE-112-58 10.51-27.51 2-13-67	00-31-11 101-201 12-17-66
}		Chlorocethane															
}		Brososethane															
l		Vinyl Chloride															
1		Chloroethane Methylene Chloride	5207 B	5310 B	1047 BJ	4 6	7.6	15 B	13.6	1117 BJ	418 63	636 FJ	852-63	46 6	1/ å	17.6	5 (4)
<b>{</b>	•	Acetone	10541 8	6726 B	13398 6	10 16	1950 E8				5289 B	6480 B	13861 9	708 6			: 62 bt
!	_	Carbon Disulfide				••			71	13377	0127 V	0100 0	1,001 0	,,,,	1407 66		. 52 66
1		1,1-Bichloroethene															
		1,1-Bichloroethane															
:	10	trans-1,2-Bichloroethene					3 J										
i		Chloratora															
	-	1-2-Dichigraethane															
		2-Butanone (MEK)	13970 B	9774 1	9702 B	10	20 ,		23	10731	4059 \$	8640 B	14474 B	168 8	12 8	27 B	22 B
		1,1,1-Trichlargethame										432 1					
1		Carbon Tetrachloride															
i i		Vinyl Acetate Dromodichtoromethane															
'i	_	1.2-Bichlorosethane															
' <u> </u>		trans-1,3-Dichloropropene		·													
i		Trichloroethene	3010									648 J					
<u>,                                    </u>		By brosechiarosethans										0.00					
		1.1,2-Trichloroethane						*									
.)		Benzene	24130	437 J	2156					1000 J	107 J	1008 J	3340	23 J			
,	24	cts-1,3-Dichloropropene															
		1 ~ 2-Chloroethy] Viny] Ether			<del>-</del> - · ·												
2		Brocefors															
1		4-Methyl-2-pentanone			4158											l BJ	
4		2-Heranane		***			•										
4	_	Tetrachiproetheme .	2667	2950								612 J					
1		) 1,1,2,2-Tetrachloroethans   Tolumns	24130 B	1657 JB	5087					77910	1353 B	3120	1877	40			
Ί		Chlorobeazene	45720	14160	7854		10			3234	935	2640	100550	2040			
1		Ethylbenzone	9779	3048	5082					588 3	283 J	9160	1035 1	94			
.]		Styrene	••		****					,		V.07	,	••			
.)		Total Tylenes	11047	1652 J	4150					967 J	102 J	2760	1620 J	Bu	-		
.l		•															

_[	T	SITE	- "SITE J" -	EITE J	ELLE K	SITE K	SITE K	U. NAK	SITE L	SITE L	SITEL	SITE L	SITE L	SITE N	STITE N	BL ANK	SITE P	
•	•	SAMPLE MUMBER SAMPLE BEPTH BATE SAMPLED	BC-J2-12 15'-25' 12-17-86	BC-33-13 0-10* 12-17-86	DC-K1-00 0-10' 12-16-87	DC-K2-25 G-10' 1-12-07	BC-K3-32 101-201 1-22-87	DC-LD-01 +	DC-L1-02 5' -10' 12-12-06	BC-L2-03 5'-15' 12-12-86	DC-L3-04 51-151 12-12-86	DC-L4-09 10'-20' 12-17-86	DC-L4-10 8 10'-20' 12-17-86	DC-N1-05 0-10' 12-15-06	BC+N2-06 51-151 12-15-85	DC-NB 07 +	DE-P1-53 A-11 2 11 a'	
- 1	,	1 Chloromethane	- · · <del>-</del>														•	
	•	2 Brosomethane 3 Vinyl Chloride																
- !	•	4 Chloroethane																
ام		5 Nethylene Chioride	372 63	3 93	6.8	13 6	9 B	17 \$	14 6	141 6	2278 8	â	5.3	4 63	ا ه	4 #3	18 F	J
•		á Acetone	4487 8	467 BE	212	44 9	1003 EB	32 8	907 8	447 8	4557 B	32 🛭	81 6	45.9	11 63	23.9	1925 H	
1		7 Carbon Disulfide																
	• .	0 1,1-Dichloroethene																
		9 1,1-Bichleroethane																
	••	10 trans-1,2-Bichloroethene 11 Chloroform									20253	96	49				13	
		12 1-2-Bichloroethame									20233	76	47				1.	
	••.	13 2-Butanone (MEK)	6026 B		25 ₽	29 B	29 9		14		10000 B	16 3			14 J		168 8	i
•		14 1,1,1-Trichloroethane			•••	• • •	-,,				10000						100 2	
•		15 Carbon Tetrachiorade									•							
- [		16 Vinyl Acetate																
o'	p.	17 Bromodichloromethane																
۱,	/4\	18 1,2-Bichloropropine																
.  -		19 trans-1,3-Dichloropropene	•															
	. 6.	20 Trichiproetheme 21 Dibromochloromethame																
i i	£.,	22 1,1,2-Trichloroethane																
_1	<u></u>	23 Penzene								141	4177	7 J	4.3				49	
		24 cis-1,3-Bichlaropropene								141	41.7	, ,	٠,				1,	
	~1	25 2-Chloroethyl Vinyl Ether	,		_			· · · · · · · · · · · · · · · · · · ·										
<b>a</b> '	1.	26 Brosofors																
•	• • *	27 4-Methyl-2-pentanone		4 J	11 J				0 3	167		48 D	49 8	4 3			49	
		20 2-Hezanome															49	
	*•	29 Tetrachloroethene																
- !	···	30 1,1,2,2-Tetrachloroethame	•															
ا ۔		31 Toluene 32 Chlorobenzene			15					2177	26592	47	50				413	
	••	32 Chlorobenzene 33 Ethylbenzene	2051							40 J							173	
,	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	34 Styrene	1441							4// 3							114	
_;	4.1	35 Total Eylenes	7949							179	67(-)						450	
•	4.1									•••	•,,,						•	

并

-(	q-		SITE	SITE P	SITE P	SITE P	SITE O	SITE U	ZIIE O	SITE 0	SITE 0	SITE O	PL AMK	SITE D	SITE 0	SITE 0	SITE 0	SITE O
	,	•	SAMPLE MUMBER SAMPLE DEPTH	8C-P2-54 251-351	8C-P5-\$\$ 10'-25	9C-P5-54 F 161-251	0C-Q1-59 151-251	5020. 0C-05-90	0C-03-41	0C-04-62 0-10*	DC-05-63 B.5'-20'	0C-05-64 1 8.51-701	UC-00-65 •	DC-06-66	DC -09-72	DC-09-73	GL-010-74	DC 010-75
	•		DATE SAMPLED	25 - 55 2-11- <b>0</b> 7	2-12-07	2-12-87	2-16-07	2-17-87	2-17-87	2-17-87	2-17-67	2-17-07	2-10-07	151-251 2-18-87	0-19° 2-26-a7	171 - 271 2-26-97	51 - In 1 2 - 26 - 6 ³	1911. 1921.
	,		I Chloromethame						• •									
	-		2 Broomethane 3 Vanyl Chlorade															
- 11	0.		4 Chloroethane					• •										
	1		5 Hethylene Chioride 6 Acetone	5 N 30 A201		5 BJ 613 BE		35 9103 ME	16 J 4465 <b>p</b> C	7693 61 833 61		18 J	133 6	4.3	518 FT	Artis.		
i.			7 Carbon Bisulfide	10.10 BG	))) FC	41.) PC	1 177 PE	AIO M	AAND M	767: P	8924 66	11463 96		457 B		259 c B	184r F	.514 F
			8 1,1-Bachlaraethene															
•			9 1,1-Bichloroethane					10 1										
	٠,		10 trans-1.2-Bichlorgetheme					192	4.3									
	d.		11 Chloroform															
	n,		12 1-2-Dichlorgethame					23										
	٠.		13 2-Butanone (MEK)	76 8	27 8	26 B	20 8	25641 . BE	26 8	7179 8	244 8	171 3		20 8		4444 B	7436 1	670*
			14 1,3,1-Trichloroethame 15 Carbon Tetrachloride							1410								
,			15 Larmon Tetrachiorime 16 Vinyl Acetate															
	. !		17 Bromodichloromethane															
	i		18 1,2-Dichloropropane															
ĺ.	]		19 trans-1,3-Bichlorupropent						<del>-</del> · · -									
			20 Trichloroethene					49										
	d		21 Bibromochloromethame															
-	·n.		22 1.1,2-Trickloruethame					-										
	·-		23 Benzene					667	24	30769		18 J					1795	
-	***		24 cis-1,3-Bichloropropene 25 2-Chloroethyl Vinyl Ether															
	•••		25 - 2-chiardetnyi vinyi etner 26 - Brosofors															
•			27 4-Methyl-2-pentanone	29 8				1244 B		7692								
- [			28 2-Hezarione	2 91				63		,,,,								
	. 1		29 Tetrachlorgethene															
			30 1.1,2,2-Tetrachloroethans	1				20										
1	• - [		31 Toluene							29487					293 J		4559	
			32 Chlorobenzene					1667	62	30442	74	159			841 J		59974	1259
	•••		33 Ethylbenzene					46	167	146647 E	37 J	57 3			2439	74 3	9103	34; J
_  -			34 Styrene															
	• 1		35 Total Tylenes					141	976	615385 €	244	256			21951	235 J	29487	1114 J

•	-	( 	<b>.</b>	÷	;	• •	. <u>.</u> .	<u> </u>		=	<u> </u>	<u> </u>	÷	<u>!.</u>	•	1	<u>.</u>	<u> </u>	· ;-	( 		· <del>.</del>	; ;	<b>.</b>	.:	;	<u> </u>	<del>-</del> -	<u>:</u>	<u> </u>		-	<u>.</u>	-	<u>_</u>		•
				:						!			,																								
35	¥	Z	ä	=	۶,	29	3	27	2	2	24	23	:3	21	8	7	=	17	=	5	<b>-</b>	13	17	=	<u>.</u>	•	-	7	•	٠,	_	u	~				
Total Lylenes	Styrene	Ethylbenzene	Chiarobenzene	Toluene	1,1,2.2-Tetrachloroethane	Tetrachlorsethene	2-Hexanone	4-Methyl-2-pentanone	Brosefers.	2-Chieraethyl Viayl Ether	cis-1,3-Bichlaropropene	Ben zene	1,1,2-Trichloroethane	Babrosechlorosethane	Trichlorgethene	trans-1,3-Bichloropropend	1,2-Bichloropropane	<b>Broadichlorseethane</b>	Vinyl Acetate	Carbon Tetrachioride	1,1,1-Trichlorpethane	2-Putanone (MEX.)	1-2-Bichloroethane	Chlorofore	trans-1.2-Dichloroethene	I, 1-Dichloroethane	1.1-Bichlorgethene	Carbon Disulfide	Acetone	Methylene Chloride	Chioroethane	Vinyl Chloride	Dronoethane	Chlorosethane	DATE SAMPLES	SAMPLE MUNDER	
				•																																	
				,						:				-		i																		i			

<u>(</u>	[		SITE		-SITE 6	SITE 6	PLANK.	SITE 6 -	SITE 6	BITE 6	KAK	SITE 6	SITE 6	SITE 6	SITE 6	TO ANK	SITE 6	SITE 6
7				LE NUMBER LE DEPTH	DC-61-26 0-10'	DC-61-27 10'-20'	BC-66-29 •	0C-62-30 5'-15'	8C-62-31 8 5'-15'	8C-63-33	BC-68-34	8C-64-35 51-201	DC-64-34 5'-20	BC-65-37 4	DC-64-47	00-69-48 •	DC-67-69	DE-68-70
•				SAMPLED	1-12-07	1-12-87	1-14-87	1-14-87	1-14-87	1-24- <b>0</b> }	1-26-87	1-26-87	1-26-87	5′ -15′ 1-27-87	2-23-67 2-23-67	2 - 24 - 87	101-251 2-24-67	101-201 2-24-67
,		i	Phe	noi					<u></u>	÷	-			177800				
•				(2-Chioroethyl)ether														
- •				hiorophonol										0763 J				
_  ''	1			-Bichlorobenzone				754. 1				2777	7754 1					
D; '		3		-Bichlorobenzene zvi Alcohol				3554 J				2376	3750 J	4095 J				
11	1	,		zyl niconai -Bichlorobenzene	-		-							9042 J				
<b>.</b> i.	1			ethy i pheno i										3554 J				
	 			(2-Chloreisopropyl) ether														
-  ;;	i			ethylphenol														
<b>3</b> 1,	.)			itroso-n-Bipropylanine														
۱۰۰	<u> </u>	12	Nes	achioroethane														
- ļ.,	,			robenzene	÷ •					• •								
	.'			phor one														
-  -	i			i tr <del>ophe</del> nol														
ļź.	į			-Biaethylphenol														
•	1			zoic Acid														
1:-	İ			-(2-Chloroethoxy)nethane														
_ i**	i			-Dichlorophenel										38100	14118 J			141429 J
ď				,4-Trichlorobenzene hthalene				4953 J	4 <b>8</b> 26 J					7874 J	103529		120006 J	******
12.	1			ntnasene Aloroaniline				4733 4	1928 3					254000 5969 J	341176		109231 J 239769 J	5428571
	i			achlorobutadiene										2767 3			239784 3	
	j			hlore-3-aethylphenol														
.	-			ethy Inaphthalene										13970 J	8706 J			37145 J
٠.	.]			achlorocyclopentadiene											3.45			2.245
┛(,	1.	27	2,4	,4-Trichlorophenal										49530				
-	Ċ			,5-Trichlorophenol														
	-			hloronaphthalene														
~   _"	١.	30	2-N	litroomi i ire														

		STIE	BITE B	SITEN	SIJE H	SITE W	SITEM	PLIE M	ZITE N	BLANK	SITE H	ZITE H	SITE W	ZITE H.	SITE H	SITE
		SAMPLE MUMBER	BC-69-71	DC-H1-14	DC-H1-15	DC-H2-16	DC-H3-17	DC-H3-10 8	DC-H4-19	DC-HD-20 +	BC-H5-21	DC-H6-22	DC-H7-23	DC-H8-24	GC-H9-20	DC-11-38
-		SAMPLE DEPTH	35'-40'	15'-25'	351-501	51-201	10'-20'	10'-20'	10'-25'		0-10.	35 56	3520.	5' 45'	15 - 25	0-10.
		DATE SAMPLED	2-24-87	12-18-84	12-10-07	1-5-07	1-6-07	1-6-07	1-6-07	1-7-07	1-7-07	1-8-87	1-8-87	1-9-07	1-13-07	1-27-87
	1	Phonoi						477 3								
	2	bis(2-Chloroethyl)ether														
	3	2-Chlorophenoi														
	4	1,3-Bichlorobenzene		241935 J		125 <b>80 J</b>			~ 7645 J							
		i,4-Bichlorobenzene		30645161 E	1190	890000			66110					62 J		10960
		Benzyl Alcohol							7923 J							
		1,2-Bichlorobenzene		.14324624 E	548	90400										8705
		2-Methylphenol														
	,	his(2-Chloroisopropyl) ether														
		4-Methylphenol						172 J								
		* **														
		Hexachloroethane														3014
•		Nitrobenzene							- '							
	14															
		2-Hitrophenol														
		2,4-Bisethylphenol						92 J								
	17						140 <b>8 J</b>	2640								
		bis-(2-Chloroethoxy)methane														
		2,4-Bichloraphenal		341422				220 1	1474 1							
		1,2,4-Trichlorobenzene	15116 J	7500645	1048	211400		145 J	174600			41 J				6713
		Maphthalene	109302			2265000	202 J	1320						44 J		2877 .
		4-Chlormaniline	B023 J	•												
										•						
		4-Chlore-3-eethylphenol				*****										
		2-Methylnophthalene	12422 1			34730₫		ın ı						1% J		3425 .
		Hexachlorocyclopentadiene		413047												
	21	2,4,6-Trichlorophenol 2,4,5-Trichlorophenol		612963	179 3											
		2,4,3-171CH10F0pmem01 2-Chloronaphthalene														
		2-Unitroaniline														

_(	1		SITE	. "BILE I	sine I	-site i	SITE I	SITET	TAK -	ELIE I .	SITE I	SITE 1	SITE 1	STLE 1.	FILE	SITE 1	SITE I
			SAMPLE MUMBER SAMPLE BEPTH BATE SAMPLED	9C-12-39 5'-25' 1-20-07	9C-13-40 5'-15' 1-29-87	8C-15-41 5'-27.5' 1-30-87	9C-15-42 28'-38' 1-30-87	DC-14-43 10'-25'- 2-2-87	9C-18-44 2-3-07	9C-17-45 3.5'-12.5' 2-3-07	8C-17-46 131-231 2-3-87	DC-17-47 s 13'-23' 2-3-87	DC-19-48 6'-23' 2-4-07	DC-19-49 241-301 2-4-07	0C-110-50 151-301 2-4-87	9C-111-51 &1-701 2 5-87	DC-111-52 761-391 2-5-07
			ANIC DUMPER	1 10 0	1 1, 4,		1 30 07	2 2 47	2 3 67	2-3-07	2-3-67	2-3-61	2-4-07	2-4-07	2-4-07	2 3-07	2-3-07
1	,	· i	Phenal					_ 12549 T.									
D	١٠	2															
	*		2-Chiorophenoi	18900 J													
ì	1.3		1,3-Dichlorobenzene		****	54.00A	22424	12104								70140	
■.	• •		i,4-Bichlorobenzene Benzyl Alcohol	32400	3666 J	558 <b>8</b> 00	22420	72380								1937900	1596 J
- (	12) 13)		1,2-Bichiorobenzene	324000	2679 3	139700 3	1490 3	15400 J									
_ '			2-Nethylphenal		2011		• • • • • • • • • • • • • • • • • • • •										
			bis(2-Chioroisopropyl) ethe	r													
		16	4-Hethylphenal														
	5 J	- 11	M-Mitroso-n-Bipropylamine														
7	146		Hexachloroethane														
1	ועו		Mitrobenzene	• • •		-		· · · ·	~								
	25.1		lsophorone														
-			2-Nitrophenol														
- 1			2,4-Binethylphenol					-									
D'	- 4		Benzosc Acad	42100 J													
į	-4		bis-(2-Chloroethoxy)methane														
_i	۲٦,		2,4-Bichlarophenol 1,2,4-Trichlarobenzene	1485000		#255000 E	437200 E	477400		•		-			9000 J		
9	76 l		l,z,4-trichterpoenzene Naphthalene	58050		43500 J	1100 J	4//400 44660 J							116400	100200	112000
- 1			4-Chlorosniline			43180 J	1100 3	47000 3					514500	1845 J			
_ 1			Herachlorobutadiene			13150											
			4-Chloro-3-methylphenol														
- {	أبر		2-Methylnaphthalene	7026 3		- ·- 58470 J	1700 3	169906					3880 3	*		23380 1	1
•	12		Hesachlorocyclopentadiene				•	••••					3550 0			2.500 4	
₽.			2,4,6-Trichlorophenol														
·	14.	21	2,4,5-Trichlorophenol														
	64		2-Chioronaphthaiene														
-	10	30	2-Mitroaniline														
- 1	.,																

450

. .

30 2-Mitroaniline

	SITC	SITE 1	1 3710	BITE J	BITE J	SITE J	BITE K	SITE K	8116 ).	BL AW.	9116 1	BITEL	\$10E £	911C L	SIIC C
	SAMPLE MUMBER SAMPLE BEPTH	DC-112-57	BC-112-50 10.5'-27.5'	DC-J1-11	DC-J2-12	DC-13-13	DC-K1-00	DC-K2-25	BC-K3-32	9C-LD-01 +	DC-L1-02	DC-L2-03	DC-L 3-04	DC-L4-09	DC-14-10 #
	BATE SAMPLED	3.5'-12.5' 2-13-07	2-13-07	12-17-06	15' -25' 12-17-8o	0-10° 12-17-86	0-10° 12-14-07	0-10' 1-12-87	10°-20° 1-22-87	12-12-86	5′ -10′ 12-12-86	5' -15' 12-12-86	51-151 12-12-86	101-201 12-17-86	101-201 12-17-86
 1	Phenai											346 J	1519°J		
2	bis(2-Chloroethyl)ether														
3	2-Chlorpphenol												2152		
4	1,3-Dichlorobenzene	•	Ē				-								
5	1,4-Bichlorobenzene					211 J							215 J	•	
	Benzyl Alcohol														
	1,7-Bichiprobenzene					100 J									
	2-Methylphenol														
	bis(2-Chloroisopropyl) ether														
	4-Hethylphenol											98 J	1089 J		
	N-Mitroso-n-Bipropylamine														
12	Hexachloroethane														
13	Mitrobenzene														49 1
14	Isophorone														
15	2-Natrophenol														
14	2,4-Dimethylphenal														
17	Benzaic Acid														
18	bis-(2-Chlorgethoxy)methame														
 77	7,4-Bichlorophenol								*			•			
20	1,2,4-Trichlorobenzene						96 J	l							
21	Haphthalene				17949		153 3	48 J				154 J	532 J		
22	4-Chlorganiline		-			•						****			
23	Hexachiorobutadiene														
	4-Chlorg-3-seth-lphenol														
	2-Hethylnaphthalene				£1228 -				•			. 222 1	1000 J		<del>-</del>
	Hexachlorocyclopentadiene				31330			•				333 4	1000 3		
	2,4,6-Truchlorophenoi														
	2,4,5-Trichlorophenol						-								
	2-(hioronaphthaiene														
	7-Culo, numbers year														

45/

_	
$\mathcal{L}$	
7	

e1" -	SITE	SITE N	SITE #	BLANK	SITE P	TITE #	SITE Y	SITE #	SITE O	SITE 0	SSTE 0	SITE O	0 3112	SITE 0	BL ANY
2 4 7	SAMPLE MUMBER SAMPLE BEPTH BATE SAMPLEB	BC-N1-03 0-10* 12-15-86	8C-H2-06 5'-15' 12-15-06	BC-MB-07 +	BC-P1-53 0-10* 2-11-87	BC-P2-54 75'-35' 2-11-07	BC-P3-55 10'-25 2-12-87	8C-P5-54 8 10*-25* 2-12-07	DC-01-59 15'-25' 2-16-07	9C-02-60 20'-3a' 2-17-87	DC-D3-61 10'-20' 2-17-07	0C-04-62 0-10* 2-17-87	DE-05-43 B.51-201 2-17-87	DC+85+64-4 8,51+291 2-17-87	DC-0B-65 + 2-18 87
	1 Phenoi 2 bis/2-Chloroethyllether 3 2-Chlorophenoi				3875 1										
. O.	4 1,3-Dichlorobenzene 5 1,4-Dichlorobenzene 6 Denzyl Alcohol				9975 J	-									
	7 1,2-Bichlorobenzene 8 2-Methylphenol 9 bis(2-Chloroisopropyl) ether 10 4-Methylphenol			•	3623 J							24339 J			
18	10 4-metayipmenoi 11 M-Hitroso-n-Bipropylamine 12 Hesachioroethane 13 Mitrobenzene			<u>-</u>				· <del>-</del> .							
20 21	14 Isophorone 15 2-Nitrophenol 16 2,4-Bimethylphenol					•									
2-1  	17 Fenzoic Acid 18 bis-(2-Chloroethoxy)aethane 19 2,4-Bichlorophenol 20 1,2,4-Frichlorobenzene			<b>→</b>		p. 2						26923 J	٠		
	21 Maphthalene 22 4-Chloroaniline 23 Hexachlørobutadsene					•						34615 3			
2-8 2-9 30 31	24 4-Chiors-3-methylphenol 23 2-Methylmaphthalene 26 Hexachlorocyclopentadiene 27 2,4,6-Trichlorophenol	- · <del></del>		<del> </del>								160256			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 2,4,5-frichiorophenol 28 2,4,5-frichiorophenol 29 2-Chioronaphthalene 30 2-Hitroaniisne														

 	TITE	SITE 0	"SITE O"	SITE 0	SITE O	- SLIE Q	
	SAMPLE NUMBER SAMPLE BEPTH	9C-04-66 15'-25'	DC-09-72 0-10'	BC-09-73 151-201	8C-010-74 5'-10'	BC-010-75 10'-15'	
	BATE SAMPLED	2-10-07	2-26-07	2-26-87	2-26-87	2-26-87	
 · - 1	Phenai						
2	bis(2-Chloroethyl)ether						
3	2-Chiorophenol						
4	1,3-Bichlorobenzene						
5	1,4-Bachlorobensene		4634 J		117871		
6	Benzyl Alcohol						
7	1,2-Bichlorobenzene		32927	-	100000		
•	2-Nethylphenol						
9	bis(2-Chloroisopropyl) eth	Mer					
10	4-Methylphenol						
11	M-Mitroso-n-Dipropylanine						
12	Herachloroethane			•			
13	Hitrobenzene						
14	Isopherene						
15	2-Mitrophenal						
16	2,4-Binethylphenol						
17							
18	bis-(2-Chloroethoxy)sethan	ne .					
 19	•			-			
	1,2,4-Trichlorobenzene		25610				
21			4707 J				
22	· · · · ·						
23	Herachlorobutadiene						
24							
 	7-Hethylaaphthalene		31707	<del></del> ·	7308		
	Menachiorocyclopentadiene		31/4/		/300		
	2,4,6-Trachlorophenol						
	2,4,5-Trichlorophenol						
29	• •						
30	•						
30	T.MIILAGUTITUS						

Subsurface Soils Semivolatiles

•		•		<u> </u>	•		•	•	<u> </u>	•		_	·	_		•	_	•	,					,	_		•		_				_
<u> </u>	1 2 3	<u> </u>	- : :	: ;	<del>;</del> :			: :		3 7	<u>;</u> ;	: :	-	<u> </u>	<u> </u>	<u>;</u>	1	<u> </u>	**	-	۲ <b>و</b>	=	: ;	<u>.</u>			= ;			•	J .	- N	
;										5.1										i 		!		_				1		:			.   .
i	:	1					34 Denza(g,h,i)Perylene 35 Dibenz(a,h)Anthracene			29 Di-m-octyl phthalate 30 Demzo(b)Flueranthene	Ξ.	26 Senzo(a)Anthracene 27 his(2-ethr)hervil phthalate	-,	23 Pyrene 24 Butvi šenzvi obthalate	77 Fluoranthene	20 Anthracene 21 Di-m-butyl phthalate	19 Phenanthrene	19 Pentachlorophenol	16 4-Brosophenyl-phenylether	15 H-Hitrosodiphenylasine	14 4,6-Dimitro-2-methylphemol	12 fluorene	il 4-Chiorophenyi-Phenyiether	9 2,6-Diautrotoluene	0 2,4-Osnitrotoluene	7 Sibesysfuras	5 2,4-Binitrophenol	A Accounting	2 Acomphylene	1 Disethyl Phthalata	DATE SAMPLED	SAMPLE MUMBER	SITE
						!!!			:		1					37	;		:	: : !				:				:		1	0-10' 1-12- <b>87</b>	DC-61-26	9 MIS
			!						;							79. IL	; i									1		:			1-12-07	BC-61-27	S 311S
													!		1	Ĕ										!		•			1-14-87	BC-68-29 +	
													:				-	40640 620000 E	• •												1-14-87 1-15	DC-62-30	9 31 IS
	ı					i				•	!				1			2)940			-			•		:    -  - 		:		1	1-14-07	DC-62-31 1	9 3115
:						:											1		!									:			1-26-87	DC-63-33	STR 6
			•						:						:		!						•	•		:					1-24-07	NC-61-34	N AN
																															5°-20° 1-26-87	DC-64-35	9 3115
																															5'-20 1-26-87	DC-64-36	9 3118
											72860			19050			76670			177800											1-27-87 1-3-15	DC-65-37 1	9 3118
													,		f 4859		. f 15421	23529 J													20'-39' 2-23- <b>0</b> 7	DC-64-67	9 3115
				,											10000																2-24-67	DC-60-60 •	DI ANK
													1				10770	47,9211							33846 J						2-24-87		9 3115
													!			;	31629 3	184.114					22837								19*-20* 2-24-87	07-88-JQ	9 3415

Septiment   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector   Sector	### Secretary   Re-81-14   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-15   Re-81-	SAMPLE MANNER  SAMPLE MANNER  SAMPLE MANNER  SAMPLE MANNER  SAMPLE MANNER  SAMPLE MANNER  SAMPLE MANNER  SAMPLE MANNER  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  2, 4-Bastroniane  3, 4-Bastroniane  4, 8-Bastroniane  5, 8-Bastroniane  5, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  6, 8-Bastroniane  7, 8-Bastroniane  7, 8-Bastroniane  8, 8-Bastroniane  7, 8-Bastroniane  8, 8-Bastroniane  7, 8-Bastroniane  8, 8-Bastroniane  7, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane  8, 8-Bastroniane	1025° 1-4-19 1025° 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87 1-4-87	•	6C-H5-21 1-7-87	90 - 146 - 22 35 - 50 1 - 8 - 87	bc-H7-23 35 - 50 1-8-67	19-87 1-9-87 1-9-87 130 J	DC-49-28 15-25: 1-13-87	0-10-10-10-10-10-10-10-10-10-10-10-10-10
	### EPUM 18-14   13-25   13-36   13-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37   14-37	Mail   Saffic   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail   Mail	10-28 1-4-97 11834000 E		1-7-87	1.4-87	1-8-87	130 J	15-25	
		Mark   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same   Same	11-1-07 11334000 E		18-1-1		3 San	1.9-97	1-13-67	1-27
State   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plainting   Plaintin			<b>S</b>					1 001		1
State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   Stat	State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   Stat	### ##################################	#					130 1		
1.5	Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp		<b>S</b>							
A-fairtreaded         1373 J.         145 J.         145 J.           A-fairtreaded         1373 J.         440000         207 T.         1188         153 J.           A-fairtreaded         1127         44000         207 T.         1188         153 J.           A-fairtreaded         1127         48200         487         48200         487         187 J.           A-fairtreaded         1127         48200         487         48200         487         187 J.           A-fairtreadisest         1127         48200         487         48200         487         187 J.           A-fairtreadisest         1127         48200         487         482 J.         187 J.         187 J.           B-fairtreadisest         1867         187 J.         187 J.         187 J.         187 J.         187 J.           B-fairtreadisest         1867         187 J.         187 J.         187 J.         187 J.         187 J.           B-fairtreadisest         1867         187 J.         187 J.         187 J.         187 J.         187 J.           B-fairtreadisest         1867         187 J.         187 J.         187 J.         187 J.         187 J.           B-fairtreadisest         1867 J	Activation tropical         3374 J.         Activation tropical           2.4-distroples         (397 J.         40000         207 J.           1.4-distroples         (378 J.         (378 J.         407 J.           1.4-distroples         (378 J.         4	Accessables   1873 4   2   2   4   4   1   1   1   1   1   1   1   1	<b>\\\\\</b>					1 22 7		
A chair (regional colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored colored co	Comparison   1993 4   1000   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   1100   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T   205 T	2,4-Daitrophenol 1393 J 4-Daitrophenol 1392 J Blantsfural 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol 2,4-Daitrophenol	<b>=</b>					143 5		
Highest Figure   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Col	Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual transfer   Manual tra		•					143 3		
			•					143 3		
	2,4-finite translations	2,4-Districtiones 2,4-Districtiones 2,4-Districtiones Bickylphthalate Bickylphthalate 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 4-Lincophenyl-Phenylether 6-Lincophenyl-Phenylether 6-Lincophenyl-Phenylether 6-Lincophenyl-Phenylether 6-Lincophenyl-Phenylether 6-Lincophenyl-Phenylether 6-Lincophenyl-Phenylether 6-Lincophenyl-Phenylether 6-Lincophenyl-Phenylether 6-Lincophenyl-Phenyl-Phenylether 6-Lincophenyl-Phenylether 6-Lincophenylether 6-Lincophenylether 6-Lincophenylether 6-Lincophenylether 6-Lincophenylether 6-Lincophenylether 6-Lincophenylether 6-Lincophenylether 6-Lincophenylether 6-Lincophenyle	=							
Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont	1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5		<b>±</b>							
Electron   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel   Parallel	Chief plantate	4-Chierophenyl-Phenylether 4-Chierophenyl-Phenylether 5-Lucreen 4-Chierophenyl-Phenylether 5-Lucreen 4-Chierophenyl-Phenylether 4-Chantro-2-methylphenol 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	=							
Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   F	Chieves   11279   483260   447	#-Chierophenyi Phenyiether   11279   483200   #-Utraaniine   44-Binito-2-nethyiphenoi   11279   1146   #-Utraaniine   11279   1146   1146   #-Utraaniine   1146   1146   1146   1146   1146   #-Utraaniine   1146   1146   1146   1146   1146   1146   1146   #-Utraaniine   1146   1146   1146   1146   1146   1146   1146   #-Utraaniine   1146   1146   1146   1146   1146   1146   1146   #-Utraaniine   1146   1146   1146   1146   1146   1146   1146   #-Utraaniine   1146   1146   1146   1146   1146   1146   1146   #-Utraaniine   1146   1146   1146   1146   1146   1146   1146   #-Utraaniine   1146   1146   1146   1146   1146   1146   1146   #-Utraaniine   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146   1146								
Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   F	Figurese	Fisoree  -Hitraniliae  -Hitraniliae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae  -Lanitrazinae								
	Company   Description   Company   Description   Company   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description	4-Wittreamiliae 4,4-Winitre-2-eethylphenol 1-Broophenyl-phenylether 1-Broophenyl-phenylether 1-Broophenyl-phenylether 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Broophenol 1-Br						247 J		
Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application   Application	4,4-Braitro-2-vetbylphenol         4,4-Braitro-2-vetbylphenol         4,4-Braitro-2-vetbylphenol           Haltrosobszare Pertachlorophenol         2531         211600         254 1         1720         947         47 3           Herachlorophenol         25307         23500         231 4         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         221 3         22	4,4-Benitro-2-methylphenol Histosodiphenylanine -Bosophenyl-phenylether Factoriophenyl-phenylether Pentachlorobename Phenatheme Phenatheme Phenatheme Phenatheme Phenatheme Phenatheme Phenatheme Phenatheme Phenatheme Phenatheme Phenatheme Phenatheme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phistoreme Phis						•		
### ### ##############################	##itrosodiphevitanie #Fitrosodiphevitanie #Fitrosodiphevitanie #Fitrosodiphevitanie #Fitrosodiphevitanie #Fitrosodienie/#Fitrosodienie #Fitrosodienie/#Fitrosodienie #Fitrosodienie #Fitro									
University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   Uni	Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Protection   Pro									
Neutral brokening   114   1150   256 4   1270   943   943   943   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194   194	Nearthlerobeard   114		D.Z.							
Pertoclorophenol 23301	Penischlorophenol         753 (1400)         755 (1400)         755 (1400)         755 (1400)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         751 (151)         752 (151)         752 (151)         753 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151)         754 (151) <td>Pentachlorophenol Phenathrene Authoromy 25547 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2</td> <td>P. 961</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Pentachlorophenol Phenathrene Authoromy 25547 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 1 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2 Authoromy 256 2	P. 961							
Marketine	Description   2534	Messathrene   255H   211400   256 4	021							1918
Decided by the late   1742 BJ   1750 BJ   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   152 B   15	### State	Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Anthraceme   Ant	7 8		943	47.3		169 3	i	-
Fluctable   1742 BJ   1942 B   1942 B   1942 B   1942 B   1942 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B   1944 B	Fluctable   1742 81   1752 81   1742 82   1742 82   1742 82   1742 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   1740 82   17	Fluoranthene			Z21 J			129 J		
Functable   1536 J   12000   165 J   1700   153 J   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209   1209		Furnatives  Fyrene Pyrene 1356-9  Muti lensyl pathalate 23-25  Muticolemical pathalate 1373-0  Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticolemical pathalate Muticol	_	1126 8	824 8	0.80	1042	1014	343 83	
Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene         Pyrene<	Pyrene         Pyrene         Pyrene         933           3.14   Bathalate         23234         933           3.15   Bathalate         377300         334           bis(2-stylbesyl) phthalate         337200         231 J           bis(2-stylbesyl) phthalate         337200         750           bis(6) low-anthane         211400         1021           benz(6) files anthane         271800         135900           benz(4, k) [Perylene         113250         113250           bibenz(4, k) Mathalate         31710 J         31710 J	23234 23234 377360 332780	ı		517			231.3		99
### 137	3.4 Sin bitaiste 22234 3.4 Sin bitaiste 22234 3.5 Sin bitaiste 22234 3.5 Sin bitaiste 231 J 351 3.5 Sin bitaiste 231 J 351 3.5 Sin bitaiste 231 J 351 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Sin bitaiste 231 J 350 3.5 Si	377500 337700 211400			935			1209		22
3.1 - lichlerobestidies bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres bessichhatvacres	3,3-dichlorobenzidie  Benzichlatweren  benzichlatweren  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  Birgere  B	introperialise introduces 377500 ylberyl) patholiste 332200 lucracibese								
1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157   1157	17.200   231 2   234	SSZ200 SSZ200 SSZ200 SSZ200 SSZ200			į		:	•		:
1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021	1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021   1021	132730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137730 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 1377000 137700 137700 137700 137700 137700 137700 137700 137700 1377000 137700 137700 137700 137700 137700 137700 137700 137700 1377000 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700 137700						1157		7.
1	Branch   Fluctacher  Branch   Fluctacher  Branch   Fluctacher  Branch   Fluctacher  Branch   Fluctacher  Branch   Fluctacher  Branch   Fluctacher    13590   13550   13550   13550	i phthalate lucranthene	7 16		<u>.</u>		-	į	198	<u> </u>
Period					2			986		<b>?</b> ,
Desigla   Pyrene   271800   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   780   78	Desiz (E) Flore anthene Desiz (2) Frone Indenc(1,2,3-cd) Frone Indenc(1,2,3-cd) Frone Indenc(1,4,3-cd) Frone Indenc(1,4,4) Ferylone Indenc(1,4) Anthene Indenc(1,4) Anthene							5		•
Description         271800         780           Indescription         135900         464           Districtorylene         31710-3         464	Denzo(a)pyrana Indeno(1,2,3-cd)pyrana Denzo(g,h,i)Perylana Bibenc(a,h)Anlbracona	31 Beate(hilfluoranthene			1701					-
Indems(1,2,3-cd)Pyrems	Indeno(1,2,3-cd)Pyrans Benzo(g,h,i)Perylane Bibenc(a,h)Anlbracone	Benzo(a)Pyrene						. 004		,4,
Denzelg, h. iPerylene Dibenz(a, h) Mathracene 31710 J	Benzelg, k, i Perylane Bibenz(a, bibalbracon							2		į
Dibert(e,h)Mathracese	Dibenzia, bidathracene	Denzo(g,h,i  Perylene						161		
		Dibenz (a, bilanthe acese								

<u></u>	•	,	•	1:		•	• : : :	_•	)	•			<u> </u>		•		•		•		<b>.</b>	•		<u> </u>	_				_
~·	• . • .	. · .F.	_:_\$		_6	<b>.</b> :	<u> </u>		-:1	<u> </u>	. <b></b>	=	<u> </u>		i i	3	<u> </u>	<u> </u>	ė ę	<u>.</u>	5_ <b>5</b> .	<u> </u>				-	• ,	<u> </u>	
							# #				2 2 2		2 2 F 7	2 F	2	- 1	5 5 2 F	F 5			= =	9 2		^ <del>-</del>		2 -	I	ቘ ቘ	315
				,			Dibenz(a,h)Anthracene	indens(1,2,3-cd)Pyrene	enzo(k)fluoranthene	berzeit): inorantheae	bis(2-ethylbenyl) phthalate Divises	3,3"-Bichlorobenzidine	futyl Benzyl phthalate	Fluoranthene	Inibracene Bi-n-bulyi phthalate	Thenan livene	He sach lor obenzene Pent ach lor opheno I	I-Bitrosodiphenylaaine I-Brooophenyl-phenylether	t, 6-Dinitro-2-methylphenol	F-Witrassition	liethylphthalate 4-Chlorophenyl-Phenylether	"A-Dinstrotoluene "A-Dinstrotoluene	-Hitrophenol	d-Blockson	3-Hitroaniline	Disethyl Phthalate	DATE SAMPLED	SYNATE MINES	#
				!     		į					f 0601f			í	٠.	\	117430	45900			į						1-26-87	DC-12-39 5'-25'	1 1115
				,    -  -								-													ı	1	1-29-87	S:-15. 96-13-48	1 3115
													24000 J	203200	2032 <b>06</b> 2032 <b>0</b> 0	1 9000	1270006	1 00130		:						ı	1-30-87	DC-13-41 5'-27.5'	1 315
			!				,		-1			ŧ				;	177000										1-30-87	DC-15-42 20'-38'	1 315
		1				:			90000	1 08461	130900		492 <b>8</b> 0 J	10100 7	349 <b>&amp;</b> _	£ 009101	323 <b>40</b> J		-	35420 J	16940 3			14014			2-2-07	DC-16-43	1 315
					· -	- !			!					į	9720	-								;			2-3-87	M-10-44	X.A.
												:			1540			!			:						2-3-87	BC-17-45	1 3415
			•								2375			•	8500													DC-17-46	I 311S
										) (4)				. *************************************	10646												2-3-07	BC-17-47 1	1 3115
													2265 1			J2493 J				6174 J			46.					9C-19-48	1 3115
											5535			1004	מזמו					J 3075 J			-				2-4-87	DC-19-49	1 3115
											6726 J						100800			-							2-4-07	0C-110-50	1 2015
											48430 J						63460										2-5-87	BC-111-51	1 3115
									;		11000	•			-	1520	468(+0										2-5-87	267-7597 267-111-52	1 3115

Subsurface Souls Seavolatiles

	SITE	elle 1	SITE I	ZITE 1	SITE J	- SITE J	SITE K-	SITE K	SITE K	BL AW.	STIE L	SITE L	SITE L	SITEL	SITE
	SAMPLE NUMBER	BC-117-57	BC-112-58	DC-31-11	DC-J2-12	DC-13-13	DC-K1-00	BC-K2-25	PC-K2-25	DC-19-01 •	BC-L1-02	DC-L2-03	DC-L3-04	DC-L4-09	DC-L4-10
·	SAMPLE DEPTH	3.5′-12.5′	18.5*-27.5*	1050.	15"-25"	0-10	0-10'	0-10.	10' -20'		5'-10'	5"-15"	5'-15'	10 - 20	1050.
	BATE SAMPLED	2-13-07	2-13-07	12-17-86	12-17-06	12-17-06	12-16-07	1-12-87	1-22-87	12-12-86	12-12-86	12-12-96	12-12-96	12-17-86	12-17-86
- <del></del>	Binethyl Phthalate			name description	· ·								**		
								220 J							
	3-Mitroeniline				4.55										
1	1 Acenaphthene				2179 J		1201					44 3			
	2,4-Binitrophenal														
1	i 4-Hitropheno) 7 Bibenzofuran				1417 1			104 1							
					1012 J		129 3	104 J							
'	B 2,4-Binitrotoluene F 2,6-Binitrotoluene														
. 1															
1	Diethylphthalate														210
	4-Chlorophenyl-Phenylether				3462 J										
i !!	Fluorene				2495 1			195 J							
1	4-Mitroamiline					7									
i	4,6-Binstro-2-methylphenol														
	M-Mitrosodiphenylamine														
[ 14	4-Bronophenyl-phenylether														
	7 Hezachlorobenzene														
1	Pentachlorophenol											11538	58228		
•	7 Phenanthrene				14102		152 <del>9</del> J		559	45 J		407	1772 J		-
.] 20	• Anthracene	.•			710 J		294 J								
21	i Di-n-butyl phthalate		134 J					378 BJ	1329 D		171 J	372 J	2784		
4	? Fluoranthene						1765 3	2174	1208			448			
. 2:	3 Pyrene				462 J		1745 3	1342	634			202 j			
2:	4 Butyl Benzyl phthalate														
20	5 3,3 -Bichlorobenzidine		*	<del></del>											
. 20	6 Benzo(a)Anthracene						941 J	878	332 J				911 J		
	7 bis(2-ethylhexyl) phthalate			1027	2949 J	1100	21176 €		4681 B			1217		750	1297
1 2	8 Chrysene						1035 J		544			205 J		, •••	
2	9 Bi-n-octyl phthalate						2941	146 J	302 J			100 0			
1 30	Denzaible lugranthene						1035	1220	619						
]					-				***						
	2 Benzela)Pyrene						929 J	937	378 J						
!	3 Indeno(1,2,3-cd)Pyrene							610	3.00						
3:	4 Benzo(q,h,i)Perylene							598							
4 30															

3

11.18
_
=
-
_
į
-
=
ž
Sea
_
•
Ξ
ŝ
Œ
•
¥
÷
•
Ì
z
-

<del></del>	SITE	# 311S	61TE 8	ĭ	. d 3115	THE P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS P. LEWIS	THE P.	4 3118 -	5118 0	\$11E 0	\$116 0	0 3115	SITE D	0 3115	×
· ·	Banta 3.Peas	BC-111-05	DC-N2-04	MC-18-07 +	BC-P1-55	BC-P2-54	BC-P9-55	BC-85-86 B	MC-01-59	BC-62-60	DC-03-61	29-00-06	0.05-63	DC-05-64 B	DC-08-92 +
	PATE SAWLED	12-15-84	12-15-86	12-16-64	2-11-07	2-11-0	7-12-87	2-12-13	13 - 15 2-16-10	2-17-87	10 - 10	2-17-07	8.5°-20° 2-17-87	2-17-67	2-18 67
	T Disethyl Pathalate	1	1	,	!			1							
<b>a</b> :	2 Aceraphtylene 7 T-Hitenanian														
2	4 Aconophibens					1		i							
-	5 2,4-Binitrophenol														
- :	7 Dibeaufura		1	:	•				,						
•	8 2,4-Binitrataluene														
	7 2,6-Binitrateluese 10 Bistovicktori	!					: i	i							
<u> </u>															
<u>.</u>	12 Fluorene														
1 3	IS 4-Hitraailiae			-	1			!	•					Ì	
0,	14 - 4,6-Braitre-Z-methylykemel											;			
<u>.</u>	•	!				1	!	!				00000			
<u></u>	17 Menachlorobenzene	1													
*	18 Pentachiorcohenal	١									22419	474359 3			
5	19 Phenaturas	25	182	:				: !				1179	165 3	•	
•	A MATERIAL AND AND AND AND AND AND AND AND AND AND						:	į			5357				
•		1	133.1		<del>2</del> 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>	3	782	2587				1780 3		2785 J
	-	223	215 J						٠			282051			
1															
	25 Dennis Mathematical	1 176	1	t †			-		:			1			
<u> </u>			1777					į	14 077			121795		:	
	_										COA.	180080		BT 6087	
<u>. c</u>	-											( A 7 A 7		7 1641	
	30 benro(b)fluoranthene	786	L 521									19487			
 	•					:									
	32 Benzelalbyrene	7117										6 (9999			
:- <u>)</u>	34 Benzola, A. i Perviese														
	_											27364			

Subsurface Soils Senivolatiles

			:				
•	SAMPLE NUMBER	96-96-66	BC-09-72	BC-09-73	DC-010-74	BC-010-75	
	SAMPLE BEPIN DATE SAMPLEB	15 - 25 - 2 - 10 - 10 - 10 - 10 - 10 - 10 - 10	2-26-87	2-20-07	5 - 10 2-26-87	2-26-87	
	1 Disethyl Phthalafe		!	:	:		
	2 Acensphtylene						
	3 3-Mitrosasline						
	4 Aconsphiltons		2561 3				1
	5 2,4-Binitrophenoi						
	6 4-Hitrophenol						
	7 Bibenzefufan	•	- 5				
	8 2,4-Binitrotoluene						
	9 2,6-Binitrateluene						
	10 Biethylobihalate						
	11 4-Chlorothesul-Presulether						
_	13 61-22-22		1,000				
•	am 2011 71						
	13 4-Wilroamiline	İ					
	14 4,6-Dinitro-2-sethylphensl						
-	15 H-Hitrosodiphenylanne		10244 3				
	16 4-Brosophenyl-phenylether	1					
	17 Herachlorobenzene	1					
	18 Fentachlorophenol		329268	6420 1	1128211	7159 1	
	19 Phenaathrene			169 1	90524	138	!
- •	20 Anthracene		114				
	21 Di-n-butyl phthalate		7195 J	104		7 980X	
	22 Fluorathene	!	1 1117		11026 3	:	
. •	23 Pyrene		42195	1605	62951	1477 J	
	24 butyl Benzyl phthalate				3846154 E	67645	
!	75 5,3"-Bichlerobenzidine				:		
	26 BenzolajAnthracene		23410				
. •	-			114		7 000	
	28 Chrysene		62195	1405 3	12028	1818	
	29 Bi-n-octyl pathalate						
	30 Benzo(b)fluoranthese		17073 3				
	31 Benzofkifiueranthene	•				•	
	32 BenzolalPyrene		19512				
	33 Indene(1,2,3-cd)Pyrene						
	34 Beazoig, h, 1 Perylene		17073 J				
	15 Bibers (a bidelike seman						

- ا) -		-	SITE	"SITE 1	SITE I	SITE I	SITE 1	SITE I	" DLANK	SITE I	SITE I	SITE 1	SITE I	SITE I	1 3112	SITE I	SITE I
•	}	•••	SAMPLE MUMBER	DC-12-39	₽C-13-40	BC-15-41	DC-15-42	DC-14-43	DC-1D-44	DC-17-45	DC-17-46	DC-17-47 I	DC-19-40	BC-19-49	DC-110-50	OC-111-51	DC-111-52
١.			SAMPLE BEPTH	5'-25'	5'-15'	5'-27.5'	281-381	10' -25'		3.5"-12.5"	1323.	1353,	6' -23'	241-301	151-391	81-201	761-391
•			DATE SAMPLED	1-20-07	1-29-07	1-30-87	1-30-87	2-2-87	2-3-07	2-3-07	2-3-87	2-3-07	2-4-87	2-4-87	2-4-67	2-5-87	2-5-67
- },	!		Disethyl Phthalate				,										
•	ì	2	Acenaphtylene														
		3	3-Mitrooniline		_												
10	1	4	Acenaphthene					14014									
•		5	2,4-Binitrophenol														
1.2			4-Hatraphenol						_								
_   113	1		Dibenzofuran										5586 J				
0			2,4-Binstrotoluene 2,4-Binstrotoluene														
115	i		2,0-Dinitrologuene Biethylphthalate					16740 3									
-   ''			4-Chlorophenyl-Phenylether					18740 3									
1	i .		fluorene					35420 J									
1"	1		4-Nitroaniline					22450 1					6174 J	3675 1			
_["	i i		4,6-Binitro-2-aethylphenol														
) 21	Ί		M-Mitrosodiphenylaaine	45900 J		100330 1											
121	1.		4-Brosophenyl-phenylether	43700 2		100320 1											
_ ''	i i		He not y o copen sens 4-ac probuen à 1-buen à 1 acuer	117450		1270000	177000	32340 J							4. 6.3		
	<b>'</b> [		Pentachtorophenot	117430		12/1000	1,,000	25240 1							100900	03460	46B(+)
1	Ί		Phenanthrone			40000 1		44444									
_ i^	ì		Anthracene Anthracene			4 <b>8</b> 000 J 203200		101640 J					12495 J				1250 3
	·{		Antaracene Bi-n-butyi phthalate			203200		23100 J	4730	44.44							
14			Fluorantheme	_		203200		34940 J	9720	15600	85(10	10448		10332			11280
_  20	1		Pyrene Pyrene			203200 24(4)0 J		18480 J									
								492 <b>00</b> J					2205 J				
*	4 		Butyl Bonzyl phthalate			139000 1											
_  21	1		3,3'-Bichlorobenzidine														
<b>D</b> "	i		Benzo(a)Anthracene	31 <b>05</b> 0 J				130900							6720 J		
14			bis(2-ethylhexyl) phthalate	21030 1				1 20 And			2375			5535		48400 J	11000
_]**			Chrysene									5598					
<b>D</b> .**	1		Bi-m-octyl phthalate Benzolb)Fluoranthene					****									
	·!							3243u J									
1''	•	31	Senzo(2)Fluoranthene Senzo(a)Fyrane														
•	'n		Indeno(1,2,3-cd)Pyrene														
<b>]</b> *	i		Benzalg, h, i ) Perylene														
_ *	Ï		Pibenz(a,h)Anthracene														
	<u>'</u> ]	33	statutitium im ortug														

#### Subsurface Soils Senivolatiles

Sample   Mindel   Military   Mindel   Military   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel   Mindel	A	 SITE	SITE 1	SITE I	SITE J	SITE J	elle 1	ZIIE K		SITE K	<b>BLANK</b>	SITE L	SITE L	SITEL	SITE L	SITE L
7 Pibezefura 1013 J 129 J 104 J 14 B 2,4-Binitretaluene 9 2,4-Binitretaluene 10 Biethylphthalate 11 4-Chlorophenyi-Phenylether 12 Fluorene 3462 J 195 J 13 4-Mitroaniline 14 4,6-Binitre2-sethylphenol 15 B-Mitrosodybenyianine 16 B-FranchlorophenyiPhenylether 17 Hexachlorobenzene 18 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 Biethylphthalate 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 12 B-Panachlorophenol 13 B-Panachlorophenol 14 B-Panachlorophenol 15 B-Panachlorophenol 16 B-Panachlorophenol 17 B-Panachlorophenol 18 B-Panachlorophenol 18 B-Panachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorop	2 4 9	 SAMPLE MUMBER SAMPLE BEPTH	3.5'-12.5'	18.5'-27.5'	DC-J1-11 10'-20'	15"-25"	0-10'	0-10	0-10.	101-201		5'-10'	51-151	51 151	101-20	101-261
7 Pibezefura 1013 J 129 J 104 J 14 B 2,4-Binitretaluene 9 2,4-Binitretaluene 10 Biethylphthalate 11 4-Chlorophenyi-Phenylether 12 Fluorene 3462 J 195 J 13 4-Mitroaniline 14 4,6-Binitre2-sethylphenol 15 B-Mitrosodybenyianine 16 B-FranchlorophenyiPhenylether 17 Hexachlorobenzene 18 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 Biethylphthalate 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 12 B-Panachlorophenol 13 B-Panachlorophenol 14 B-Panachlorophenol 15 B-Panachlorophenol 16 B-Panachlorophenol 17 B-Panachlorophenol 18 B-Panachlorophenol 18 B-Panachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorop	,	 [ Binethyl Phthalate			-											
7 Pibezefura 1013 J 129 J 104 J 14 B 2,4-Binitretaluene 9 2,4-Binitretaluene 10 Biethylphthalate 11 4-Chlorophenyi-Phenylether 12 Fluorene 3462 J 195 J 13 4-Mitroaniline 14 4,6-Binitre2-sethylphenol 15 B-Mitrosodybenyianine 16 B-FranchlorophenyiPhenylether 17 Hexachlorobenzene 18 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 Biethylphthalate 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 12 B-Panachlorophenol 13 B-Panachlorophenol 14 B-Panachlorophenol 15 B-Panachlorophenol 16 B-Panachlorophenol 17 B-Panachlorophenol 18 B-Panachlorophenol 18 B-Panachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorop		2 Acenaphtylene							226 J							
7 Pibezefura 1013 J 129 J 104 J 14 B 2,4-Binitretaluene 9 2,4-Binitretaluene 10 Biethylphthalate 11 4-Chlorophenyi-Phenylether 12 Fluorene 3462 J 195 J 13 4-Mitroaniline 14 4,6-Binitre2-sethylphenol 15 B-Mitrosodybenyianine 16 B-FranchlorophenyiPhenylether 17 Hexachlorobenzene 18 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 Biethylphthalate 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 12 B-Panachlorophenol 13 B-Panachlorophenol 14 B-Panachlorophenol 15 B-Panachlorophenol 16 B-Panachlorophenol 17 B-Panachlorophenol 18 B-Panachlorophenol 18 B-Panachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorop	~ •															
7 Pibezefura 1013 J 129 J 104 J 14 B 2,4-Binitretaluene 9 2,4-Binitretaluene 10 Biethylphthalate 11 4-Chlorophenyi-Phenylether 12 Fluorene 3462 J 195 J 13 4-Mitroaniline 14 4,6-Binitre2-sethylphenol 15 B-Mitrosodybenyianine 16 B-FranchlorophenyiPhenylether 17 Hexachlorobenzene 18 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 Biethylphthalate 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 12 B-Panachlorophenol 13 B-Panachlorophenol 14 B-Panachlorophenol 15 B-Panachlorophenol 16 B-Panachlorophenol 17 B-Panachlorophenol 18 B-Panachlorophenol 18 B-Panachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorop	10					2179 3		120 1					44 3			
7 Pibezefura 1013 J 129 J 104 J 14 B 2,4-Binitretaluene 9 2,4-Binitretaluene 10 Biethylphthalate 11 4-Chlorophenyi-Phenylether 12 Fluorene 3462 J 195 J 13 4-Mitroaniline 14 4,6-Binitre2-sethylphenol 15 B-Mitrosodybenyianine 16 B-FranchlorophenyiPhenylether 17 Hexachlorobenzene 18 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 Biethylphthalate 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 12 B-Panachlorophenol 13 B-Panachlorophenol 14 B-Panachlorophenol 15 B-Panachlorophenol 16 B-Panachlorophenol 17 B-Panachlorophenol 18 B-Panachlorophenol 18 B-Panachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 19 Pentachlorophenol 10 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorophenol 11 B-Panachlorop	<b>D</b> , 11															
	- 1 1			-		1013.1		129.3	104 1							
10						1013 0		11.7								
10																
1																210 1
14   15   17   17   17   17   17   17   17																
14   15   17   17   17   17   17   17   17						3462 J			195 J							
14   15   17   17   17   17   17   17   17																
14   15   17   17   17   17   17   17   17		14 4,6-Dinstra-2-aethylphenol					•									
14   15   17   17   17   17   17   17   17		15 M-Mitrosadiphenylamine														
14   15   17   17   17   17   17   17   17	22	 16 4-Brosophenyl-phenylether						•								
14   15   17   17   17   17   17   17   17	ادءا	17 Hexachlorobenzene		•												
14   15   17   17   17   17   17   17   17	24	18 Pentachlorophenol											11538	58228		
27 Fluoranthene 1765 J 2196 1208 448 23 Pyrene 28 Butyl Benzyl phthalate 28 J 3 T Y-Birklandon (Alica )	25,	 19 Phenanthrene		· · · · · · · · · · · · · · · · · · ·						339	45 J		602	1772 J		
27 Fluoranthene 1765 J 2196 1208 448 23 Pyrene 28 Butyl Benzyl phthalate 28 J 3 T Y-Birklandon (Alica )						710 J		294 J								
27 Fluoranthene 1765 J 2196 1208 448 23 Pyrene 28 Butyl Benzyl phthalate 28 J 3 T Y-Birklandon (Alica )	1/1			134 J								171 J		2784		
1 to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	-n															
1 to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	<b>D</b>					462 J		1745 1	1342	<b>634</b>			2 <b>0</b> 2 J			
23    3,3 - Bichlerobezieline   24    37    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332    332	` 씨														_	
26   Description   1027   2949   1100   21176   1074   4681   10217   750   1297     10	127															
28 Chrysene	9'"				4023	2010 1								411 3		1207
1035 J   104	2.5				1027	2744 J	1100								/50	1297
30	_ "												205 3			
10   12   12   12   12   12   12   12																
	1"							1473	1220	817						
33 Indona(1,2,3-cd)Pyrene 610 34 Denzo(g,h,is)Perylene 598	_[``							970 1	9 (9	178 1						
34 Benzo(g,h,s)Perylone 598	♥,";							***		J						
35 Pibeni(a, hilanthracene	البا															

. H

16/

----

.

•

ار	l		8	175	SITE W	SITE #	R MK	SITE P	SITE P	SITE P	SITE P	SITE 0	SITE D	\$116 0	SITE D	SITE D	SITE D	BI AMY
	1	••		AMPLE NUMBER	OC-N1-05	BC-N2-06	8C-NB-67 +	BC-P1-53	BC-P2-54	BC-P5-55	BC-P5-54 1	BC-01-59	DC-02-60	DC-03-61	DC-04-62	06-05-43	DC-05-64-1	DC-08-65 +
-	1			AMPLE BEPTH	0-10.	212.		3-10.	25'-35'	1052	10'-25'	15 -25	30 20.	1950.	0-10.	8.51-201	8.51-201	
<b>D</b> 3	1		)	ATE SAMFLED	12-15-86	12-15-86	12-16-96	2-11-87	2-11-87	2-12-87	2-12-87	2-16-87	2-17-97	2-17-97	2-17-87	2-17-97	2-17 67	2-18-67
- -	1																	
- [,				Dinethyl Phthalate														
•	· }			Acenaphtylene														
	1			3-Mitroaniline														
_   "	1			Acenaphthena 3. A. A. a. a. b. a. a. b. a. a. a. a. a. a. a. a. a. a. a. a. a.														
•	'			2,4-Binitrophenol 4-Nitrophenol														
- 1	1			n-nitrophenoi Dibenzofuran														
_	j			2,4-Biastrotoluene														
	İ			2,6-Binitrotoluene														
	:			Diethylphthalate														
	1			4-Chiorophenyl-Phenylether														
	1			Fluorene														
	]		-	4-Witrosmiline					-									
	[			4,6-Banitro-2-methylphenol														
	1			N-Nitrosodiphenylanine											50000 J			
1.	1			4-Brosophenyl-shenylether														
				Hexachiorabenzene														
	.]			Pentachloruphenni										22619	474359 3			
		:	17	Phonanthrone	434										217949	965 J		
			20	Anthracene										5357	••••	, ,		
	,		21	Bi-a-butyl phthalate				14250 J	155 J	43.1	325 J	5267				3780 J		2795 J
			<b>7</b> 2	Fluoranthene	584	253 3									43390 J			
	J		23	Pyrene	553	215 J									292051			
. <b>"</b>  ,	.]	:	24	Butyl Benzyl phthalate														
- },	.		73 ··	3,3'-Bichlorobenzidine														
	4			Benzo(a)Anthracene	263 3										121795			
- T).	,ļ	:	27	bis(2-ethylhexyl) phthalate	934	1266					225 J	1379 8.	}	1905 BJ			2439 JB	
	٠ĺ	;	20	Chrysene	276 J										787031		1951 J	
	o¦.			B1-n-octyl phthalate														
- ,	•{			Benzo(b)Fluoranthene	289 J	152 J									79487 J			
	1 -			Benza(k)Fluoranthene														
	··'			Benza(a)Pyrene	211 3										46467 J			
-	.!			Indeno(1,2,3-cd)Pyrene														
ļ,	••			Benzalg.h,i/Perylene											52564 J			
	13	,	35	Babenz(a,h)Anthracene					•									
٠.	<i>ي</i> :																	

462

.

ŗ

4

1		3116	SITE 0	8 3118	SITE 0	0 3118	SITE 9	
	:	SAPPLE NUMBER	PC-06-46	BC-09-72	BC-09-73	DC-010-74	BC-010-75	
!		SAMPLE DEPTH	1525.	.10.	1520.	210.	.5101	
		DATE SAMPLED	2-10-07	1-36-87	2-37-81	1-36-81	2-36-87	
1	_	Bioethyl Phthalate			;			
	~	Acenaphlylene						
	~	3-Nitrosailine						
	-	Aconsphibone		2541 J				
	•	2,4-Binitrophonol						
	•	4-Nitrophenol						
	:	Dibenzeturaa		1465 3				
	-	2,4-Binitrotoluene						
	•	2,6-Diastrotoluene						
:	2	Diethylphthalate						
	=	4-Chlorophenyl-Phenylether						
	7	Fluorene		3049				
!	=	6-Hitrosailine					:	
	Ξ	4,6-Binitre-2-sethylphens!						
	2	M-Nitrosadiphenylasine		10244				
	2	4-Brosophenyl-phenylether						
	=	Hexachlorobenzene						
	=	Fent achiorophenol		329268	6420 3	1120211	1159 J	
	=	Phen ant hr ene		21431	7 699	42308		
	2	Attracene		1146 J				
	71	Di-n-butyl phthalate		1195 J	<b>5</b> 507		₹ 000\$	
:	æ	Fluoranthene	!	1317 3		11076 3		
	≈	Pyrene		62195	f \$091	15028	1477 J	
	≂	Sutyl Benzyl phthalate				3846154 E	67045	
	R	3,3"-Bichlerobenzidine		1		1	!	
	7₹	Denzo(a)Anthracene		25610				
	23	bis(2-ethylbenyi) phihalate			414		0801	
	≂	Chrysene		62195	1605 3	82951	1818 3	
	₹	Bs-n-octyl phthalate						
	2	Denzo(b)fluoranthene		17073				
į	=	Benzo(k)fluoranthene	•					
	22	Denzo(s)Pyrene		19512				
	=	Indena(1,2,3-cd)Pyrene						
	×	_		17073 5				
	2	Dibenz (a. h) Anthracene						

sadditest elice sastanedus

	P WEDCTON-1570	120 1						£ 5972			05115	901991		PP1228 3	1428571	793995
	2 WOCT 98-1524															11441
	1_ WOCF DE-1348			· · · · -												14471
	2 PROCEON-1345															
	\$ VMDC10W-1535					•										
	1 VUOCE 8K-1551 ) VUOCE 8K-1619															
	toraphene (															
	Chlerdane (															
+	Endrin Ketone	-					•	•								
	Hethoxychlor															
	1005')															
	stative matimeobas i															
	9999°) S															
	ll netlueab? 1			,		~										
	######################################															
	364+14				2013	2983						19625		0.580501		
	ninblaid !															
	[ mettuseb3 (															
	Hoptachlor Epoxide															
	with[A (															
	Heptachlor															
	(anabat.) 3M-sausd (															
	3HE-73190 1															
	344-4146															
	JHE-sdq (A															
	8314WA2 3TAG	1-13-8)	1-15-8)	18-61-1	(0-+1-T	10-11-1	18-92-1	1-54-07	10-92-1	1-59-83	10-12-5	7-32-01	18-02-2	7-54-03	18-12-2	9 +1 5
	NIG36 314NVS	.01-0	1050.		.515	.\$1\$	1050.		. 02 \$	ez\$	.515	5020.		19 -52	,6 <b>7-</b> - 01	ope gg
	BANNE 3 JANAS	92-19-30	£2-19-30	1C-09-36 •	DC-25-30	PC-05-21 t	DC- <b>e</b> 2-22	DC-00-24	DC-64-22	DC - 64 - 36	1 12-69-30	19-99-30	• 89-89-30	69-19-33	01-63-Ju	LC 69 3
	3118	9 3115	9 3115	30V 76	9 3115	511E 6	9 3115	 Drvink	9 3115	9 3115	9 3115	9 3115	.my 16	9 3115	9 3115	3115

#### Subsurface Souls Pest/PCBs

AT						-										
	SITE	SITE N	SITE H	\$11E H	SITE H	SITE H	SITE H	DL ANK	SITE H	SITE H	511E H	SITE H	SITE H	\$11E 1	SITE 1	SITE 1
;	SAMPLE MUMBER	DC-H1-14	DC-H1-15	BC-H2-16	DC-H3-17	DC-H3-10 0	BC-H4-19	BC -HR -20 +	DC - H5 - 21	DC-H6-22	DC-H7-23	DC-H8-24	DC H9-28	DC 11-3a	DC-12-39	DC 17.40
	SAMPLE BEPTH	15"-25"	351-501	5' -20	16 -201	191-201	10"-25"		0-10"	35 -50	351-501	51-15	15 -25	9-10	5 25	5 -15
<b>*</b> ].}	BATE SAMPLED	12-18-86	12-18-07	1 - 5 - 87	1-6-87	1-4-07	1-6-87	1-7-87	1-7-87	1-0-87	1-8-87	1-9-07	1-13-87	1-17-87	1-26 97	1.4 07
,,,				-												
	1 Alpha-BHC															
[]•]	2 Beta-BHC															
_   'U	3 Belta-DHC															
<b>}</b> ;''}	4 Gamma-BMC (Lindang)															
1 3	5 Heptachior															
	6 Aldria 7 Heptochlor Epousde															
ادا	1 Edosultan l															
	9 Bieldrin															
3 1	0 4,4"-DDE								564			780				
	1 Endrin															
	2 Edosulfan II						•									
1	3 4,4'-900								431							
1	4 Endosulfan Sulfate															
	5 4,4'- <b>00</b> T								923			780				
	ó Hethoxychlor															
1 (	7 Endrin Ketone															
	8 Chlordane															
	9 Toxaphene															
	0 AROCLOR-1016															
1 1	1 APOCLOR-1221 2 AROCLOR-1232															
	Z AROCLOR-1232 3 AROCLOR-1242															
	4 AROCLOR-1248															
1 1	S AROCLOR-1254															
11 L	6 ARDCLOR-1260	905483	1130 J	139524		251	18000000	205	5144	1755					276000 J	185300
133		,		******		***		443	~ 1 #0						279900 3	100000

He

.

. . .

#### Subsurface Soils Pest/PCDs

Γ	,					+										
	SITE	\$11E I	SITE I	SITE I	<b>BL AMK</b>	SITE I	SITE I	SITE I	SITE I	SITE I	SHE I	SITE I	SITE	SITE I	1 3112	ŝili
	SAMPLE NUMBER	DC-15-41	BC-15-42	DC-16-43	DC - 10 - 44	DC-17-45	DC-17-46	BC-17-47 I	DC-19-48	DC-19-49	DC-110-50	DC-111-51	DC-111-52	DC-112-57	DC 117-50	FC J;
	SAMPLE DEPTH	5' -27.5'	28'-38'	10"-25"		3.5"-12.5"	13'-23'	13" -23"	4'-23'	24 '-36'	15 30	6 -20	26 - 17	3.57-12.5	18.5 -27.5	10 -1
<b>!</b>	DATE SAMPLED	1-30-87	1-30-87	2-2-87	2-3-87	2-3-07	2-3-87	2-3-07	2-4-97	2-4-67	2-4-87	2-5-97	2-5-67	2-13-87	2-13-67	12.17
	· · ·															
	1 Alpha-BHC															
	2 Beta-SHC															
	3 Beita-BHC															
	4 Samma-BHC (Lindane)															
	5 Heptachlor															
	6 Aldrin		• •													
	7 Neptachior Epoxide															
	8 Edosulfan I															
,	9 Dieldria															
	16 4,4°- <b>88</b> E															
	11 Endrin															
	12 Edosulfan II						~									
	13 4,4'-000								29694	4642						
	14 Endosulfan Sulfate															
	15 4,4°- <b>99</b> T									4305						
	16 Methazycklar															
	17 Endrin Ketone															
	18 Chierdane															
	19 Taz <b>aphene</b>			492800												
	20 AROCLOR-1016															
	71 AROCLOR-1221															
	22 ARDCLOR-1232															
	23 ARBCL DR-1242															
	24 ANDCLOR-1248	•														
	25 ARBCLOR-1254															
	26 ARBCLOR-1260	342900 J	04140								20400 J	1				

466

0,

•

•

SAMPLE NUMBER BC-32-12 BC-J3-13 BC-K1-08 DC-2-25 BC-K3-32 BC-LB-01 + BC-L1-02 DC-L2-0  SAMPLE NUMBER BC-32-12 BC-J3-13 BC-K1-08 DC-2-25 BC-K3-32 BC-LB-01 + BC-L1-02 DC-L2-0  SAMPLE BEPTW 15'-25' 0-10' 0-10' 0-10' 10'-20' 5'-10' 5'-15'  BATE SAMPLEB 12-17-84 12-17-84 12-14-87 1-12-87 1-22-87 12-12-84 12-12-86  1 Alpha-BMC 2 Beta-BMC	51-151
SAMPLE MUMBER BC-J2-12 BC-J3-13 BC-K1-08 DC-)-2-25 BC-K3-32 BC-LB-01 + BC-L1-02 DC-L2-0  SAMPLE BEPTH 15'-25' 0-10' 0-10' 0-10' 10'-20' 5'-10' 5'-15' BATE SAMPLEB 12-17-86 12-17-86 12-16-87 1-12-87 1-22-87 12-12-86 12-12-86  1 Alpha-BHC	51-151
1 Alpha-BHC	
1 Alpha-BHC	12-12-96
▼	
Tu 2 Beta-BMC	
To Selta-BHC	
4 Sansa-PHC (Lindane)	
1-2  3 Heptachler	
6 Aldrin	
7 Heptachler Epozide 8 Edesulfan I	
15 E CONSISTAN I	
11	
TI Entre	
19 74 11	
13 4,4'-000  14 Endosultan Sulfate	
15 4.4'-007	
16 Methoxychlor 17 Endrun Ketone	
(2) IS Chlordane	
19 Totaphene	
20 ARCC 08-1016	
21 ARDCL OR-1221	
22 AAOCLOR-1232	
23 ARDCL 08-1242 19000	
117647 C 4880	
25 ARGCL DR-1254	
25 ARDCL DR -1254 26 ARDCL DR -1264 179 6344	

SITEL

BC-L4-69

10 - 20

12-17-86

SITEL

10"-20"

12-17-86

DC-14-10 8 DC-N1-05

SITE N

0-10

SITE N

DC-42-06

5 -15"

12-15-86 12-15-86

SITE P

0-10

2 11 87

DC-ND-07 • DE-F1-53

12-16-86

SITE P

SITE P

SITE P

SITE

	- [																	
	4		SAMPLE MUMBER SAMPLE BEPTH BATE SAMPLED	BC-P2-54 251-351 2-11-07	BC-P5-55 10'-25 2-12-07	9C-P5-56 1 101-251 2-12-87	8C-01-59 151-251 2-14-87	BC-D2-60 201-301 2-17-87	BC -03-61 101-201 2-17-87	DC-04-62 0-10' 2-17-87	BC-05-63 8.51-241 2-17-87	CC 05-64 4 0.51-701 2-17-87	DC-09-65 + 2-10-87	DC-86-66 151-251 2-16-87	DC - 03 - 72 (i - 10 ' 2 - 26 - 87	DC-09-73 15-20 2-26-07	DC -019-74 5 -10 2-26-87	DC 010-75 40-45 2-26-67
•	•		Alpha-BHC   Beta-BHC															
- 1			s Belta-BHC															
		•	Same-BIC (Lindane)															
	12		i Heplacklor															
	u¦"		Aldrin															
	14		/ Heptachior Epoxide   Edusuifan															
i			Dieldria															
	17		4,4*- <b>30E</b>															
			Endran															
			Edosulfan II							*								
	- 'S		E 4,4°- <b>868</b> I Endosulfan Sulfate					•										
j			5 4,4'- <b>00</b> 1															
			i Methoxychlar															
•	4.		F Endrin Ketone															
	- [6-		T Chlordane			-		-										
•	:6		F Taxaphene D AROCLOR-1016															
	44	21																
•			AROCLOR-1232								26829 C	30366						
	34.5		S AROCLON-1242							1871795					634146	24091	451539	11364
i	••		AROCLOR-1248			*** ** . *.												
•			5 AROCLOR-1254								****	7040 1						
	111	20	AROCLOR-1260								5488 JC	3902 J						

SITE O

5116 0

Section   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont	Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect		SITE	9 31.15	81TE 6	X X	SITE 6			M AM	9 3115	S11E 6	9 3115	81TE 6	M AM	9 3118	S11f 6	SITE
Wildling         714         14         3         1777         1737         1437         6471         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1737         1	Marine   1914   1845   17721   3340   17747   1439   8451   8750   9204   1899   6755   1845   6755     Marine		SAMPLE MUNDER SAMPLE DEPTH DATE SAMPLES	DC-61-26 0-10' 1-12-07	IC-61-27 10'-20' 1-12-67	DC-69-29 •	DC-62-30 5'-15' 1-14-87	0C-62-31 0 57-157 1-14-87	IC-63-33 10'-20' 1-26-97	DC-60-34 1-24-07	9C-64-35 5'-20' 1-26-87	0C-64-36 5'-20 1-26-67	9C-65-37 t 5'-15' 1-27-67	:	DC-60-68 + 2-24-87	DC-67-69 10°-25° 2-24-67	LC-68-70 10'-20'	2 2 2
Mathematy of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont	Machinesty April 1987 1570 1570 1570 1570 1570 1570 1570 157	-	Alusinus	37.6	/5781	12821	\$304	3380	1273.7	14359	8671	6020	9304		6783	18613	4343	
Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone  Berillone	Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S	~ ~	Antinony Arsenic	-	2 .	•	-	2 R	•	~	-	•	~ ;	!	<b>≪</b>	123 6	4	
Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Constitute   Con	Colorina         7         6         13         16         13         9         7         16         12         11         985           Colorina         From the color         13         16         13         16         13         16         13         19         11         985           Colorina         15         15         16         13         16         15         11         985         1213         18         3         16         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18         3         18 <td><del>-</del> n -</td> <td>Berilius Berglius Beros</td> <td>212</td> <td>3</td> <td>359</td> <td>67657</td> <td>15570</td> <td><b>2</b></td> <td>7.5</td> <td>=</td> <td>140</td> <td>:: ::</td> <td>22</td> <td>292</td> <td>1554</td> <td><b>-8</b>2</td> <td></td>	<del>-</del> n -	Berilius Berglius Beros	212	3	359	67657	15570	<b>2</b>	7.5	=	140	:: ::	22	292	1554	<b>-8</b> 2	
Chemistry, frivalent 9 6 13 18 5 16 13 9 7 1 16 12 11 965 Chaist 16 31 78 8 19 10 15 16 18 30 11 16 18 30 2213 Chaist 16 31 78 8 19 10 13 18 18 3 16 18 3 16 18 30 11 18 18 18 18 18 18 18 18 18 18 18 18	Chieffer 9 6 13 16 13 19 7 1 16 17 19 19 7 19 19 19 19 19 19 10 19 19 19 19 19 19 19 19 19 19 19 19 19		Cadeius	ŧ	!		7	1	1						7	=	•	
Coper   16	Coper	••	Chrosius, trivalent Cobalt	•	•	2	2 3	~ =	=	13	•	1	2 4	13	=	985	601	
		=	Copper	=		35	! <b>2</b> 2	: <b>-</b>	-	=	9	~	: =	=	ş	2215	16.	
Lead   12 R	Lead	=	Irea	100	185	16282	13544	6392	13712	13846	6034	9900	11418	6035	12384	53692	12243	
Hanganese   350   179   410   242   72   778   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187   187	Hanganese   350   179   410   242   72   778   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787   787	드	1004	13 B	-	3	95 95	=======================================	=		=	32 8	=	1 52	1 18	3123.4	- (Se	
Michel 13 17 35 15 19 13 15 19 10 10 10 10 10 11 123 8 Selenius Salver Salver Tia 20 21 34 22 14 25 20 19 27 31 16 1315 Jac Cyanide Cyanide	Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Morenty 6.3  Moren	= :	Ranjanese	<b>;</b> ;	£	=	242	2	<b>11</b>	# Z#X	182 B	209 8	3	73.1	357 4	282	193 0	
Selenius Salver Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thall	Selenius Salver Salver Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thallius Thalliu	= 2	Hercury Nickel	<u>;</u> =		=	2		\$1	<u>*</u>	=	13	*	01	Ξ	123	2.00	
Salver Thellius  The Salver  The Salver  The Salver  The Salver  The Salver  The Salver  The Salver  Washing  Bo Washing  The Salver  Washing  Bo Washing  Bo Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing  Washing	Salver Thellius Thellius The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The State    The St	=	Selenius	:		ï	:		!		!	!	ì	<b>;</b>	:	:	•	
16   17   18   19   27   31   16   1515   18   19   27   31   16   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   1515   151	16   17   18   20   19   27   31   16   1313   18   19   20   19   27   31   16   1313   18   190   50   65   224   86   168   2954   18   18   18   18   18   18   18   1	2 2	Salver														2	
Vanadium         28         21         34         22         14         25         20         19         27         31         16         1313           Anc         163         27         167         115         19         44         190         50         65         224         86 to 168 to 2954 to 2954 to 2954 to 2055           Cyanide         Cyanide         6         6         6         6         6         6         6         168 to 168 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 2954 to 295	Vanidum         28         21         34         22         14         25         20         19         27         31         16         1313           Linc         163         27         167         115         39         44         190         50         65         224         86.1         168 t         2954 t           Cyanide         Cranide         6         6         65         224         86.1         168 t         2954 t	<b>:</b> ►	Tia .	:		i	:		:							2	38	1
Anc 163 27 167 115 59 44 196 50 65 224 86 t 168 t 2954 t	Zinc 163 27 167 115 59 44 190 50 65 224 86 1 168 2 2954 5 Cyanide	2	Venedius	2	77	3	. 22	=	\$2	92		61	11	ន	16	1315	601	
Cyanide	Cyanide	12	linc	101	23	(91	115	2	; <b>=</b>	140	3	. <b>59</b>	224	3	1 891	2954 6	4257	
		22	Cyanide			!		ı	:		;	}		<b>1</b>	!			
					!	ļ		ĺ										

Subsurface Soul Inorganics

4	SITE	SITE H	SITE W	SITE	STTE H	SITE H	SITE W	KAK	H 3TI2	SITE H	SITE H	SITE H	SITE H	SITE I	SITE I	SITE I
:	SAMPLE MUMBER	DC-H1-14	BC-H1-15	DC-H2-16	BC-H3-17	DC-H3-10 6	DC-H4-19	BC-HB-20 +	DC-H5-21	DC-H6-22	DC-H7-23	DC-H8-24	DC-H9-28	bC - 11 - 38	DE-12-39	DE-13-40
	SAMPLE BEPTH	15"-25"	35'-50'	5'-20'	10'-70'	1050.	1052	-	0-10"	35'-50'	3520.	5'-15'	(5'-25'	0-16,	51 - 251	5 15
	BATE SAMPLED	12-18-84	12-18-87	1-5-87	1-6-07	1-6-87	1-6-87	1-7-07	1-7-07	1-0-87	1-8-07	1-9-87	1-13-07	1-27 87	1-29-87	1 29 87
<u>,</u>	Alvainus	2403	1452	1015	450	497	7567-	10974	7074	2811	2282	12117	2203	13548	1259	12524
.i	2 Antisony															
	3 Arsenic	26 6	2 1	7 R	15 R	13 🐧	388 R	6 R	42 R			4 R	3 A	11		6
	· 4 Parius	3242	38	1879	85	97	407	372	331	55	46	218	52	2403	919	334
,	5 Beryllium															
4	6 Baran															
,	7 Cadaiua	232		5			794	-	221					11	6	2
4	8 Chronium, trivalent	100	4	97			51	15	54	6	5	18		115	15	16
.!	9 Cobalt	19	3	102			47	•	ı						27	14
-	10 Copper	374	3	415	13	12	2444	29	972			51		920	84	<u>:</u> 13
	11 Iron	40224	3810	84545	510	544	54147	15441	27160	5905	4741	20519	5215	41507	10135	16732 1
•	12 Lead	1150 8	4.6	174 R	5 R	4 R	4500 R	44 R	3027 K	4 R	3 R	eg fi	5 R	£71 I	81 1	373
	13 Mangamese	2403	51	621	7	7	2247	376	34543	78	71	334	66	256 R	76 R	404 R
u l	14 Hercury	0.8			•		3.9					1.4		2.2	0.5	
	15 Hickel	15097	70	298	6	4	2983	17	42	9	9	16		111	981	28
4	16 Selenium	2														
ادر	17 Silver	4 fr					9		44							
/ <b>-</b>	10 Thallium								1							
:5:	79 11a	111		14			49							53		53
	20 Vanadium	95					20	27	20	9	7	27		553	20	32
u l	21 linc	39514	39	240	8	10	3875	153	8099	23	15	308	26	6329	491	331
20	22 Cyanide		-	. 1												

#### Subsurface Soil Inorganics

_ (	·[	-	SITE	SITE I	SITE 1	SITE I	BL AMK	SITE I	SITE T	SITE I	SITE I	SITE I	SITE I	SITE I	SITE I	SITE I	SIIE I	SITE J
			SAMPLE MUMBER	BC-15-41	DC-15-42	BC-16-43	DC-19-44	BC-17-45	DC-17-46	BC-17-47 ¢	BC-19-48	DC-19-49	DC-110-50	DC-111-51	DC-111-52	OC-112-57	DC-112-58	DC - J1 - 11
- 1	4		SAMPLE BEPTH	5' -27.5'	50, -20,	10'-25'		3.5"-12.5"	13' -23"	1352.	6'-23'	241-301	151-301	6'-20'	26'-39'	3.51-12.51	19.51-27.51	10. 50.
P	1		DATE SAMPLED	1-30-87	1-30-87	2-2-87	2-3-87	2-3-87	2-3-07	2-3-07	2-4-87	2-4-87	2-4-07	2-5-87	2-5-87	2-13-87	2-13-07	12 17 86
ł	-	i	Aluainea	2043	1040	1757	8103	7195	3872	7747	8897	1556	1687	8450	1011	1449	1205	6904
	•	2	Antioony		14	16	15							5444				
٦,	•	3	Arsonic	2		14	7	•	3	2	14		ı			2 A		3.1
ı	10		Bariua	3544		400	347	239	83	82	519			8				156
	••	5	Dervitsua											1530				
٦Į	. 2		Boron									•						
ı		7	Cadaina	2	· · · ·	7	· 7	7			. 13							
اد			Chromium, trivalent	35		731	12	23	5	5	96 1	4	6	7		4	4	9
٧į		•	Cobalt	22		22					34		13	140				4
- }	1 100	10	Copper	157		149	28	258			575			23				7
_!			Iren	11418	3553	23231	14744	14935	7300	7468	27647	4667	4687	543	2867	4897	4297	10000
			Lead	232 1	6.1	292 #			10 1	10 8	5647 1	704	9 1	23333	29 1	7.1	3 #	7 1
١			Manganese	115 R	33 R	143 #	395 A	248 R	124 N	125 R	240 B	35 A	1 LA 1	3483 1	43 R	78 1	63.1	258
_			Hercury	1.1		1.5					3.2			240 R				
			Nickel	2405	31	51	15	35		11	204		145	6.9	11			it
- 1	*'!		Seleniua	• • • • • • • • • • • • • • • • • • • •	••		**			•-				1320				
_			Silver											••••				
	- 1		Thelius															
١	<b>"</b> L		Tia			14					24	•	1					
_	["]		y lim D Yamadiwa	26		49	21	11	•	,		J	4					15
ď	•					452	203	1 <b>8</b> 439	30	27	40	125	مو	47	10	3. 4	26.4	
ı	47		linc	201	13	992	243	434	29	27	1156	125	89	43	10	21 #	20 1	36
	200 j	27	2 Eyanide	2							2			3183				
	2.9																	

276 201 8 201 8 20 8 201 8 20 8 20 8 20 8 2	: ! !	57 6 28 5 15	26 11 191 192	01	11	991 61	991 01	28	\$£1	202 23 21 12	3 <b>62</b> 33	4 322 17	<b>8</b> (	<b>\$</b> \$	Selenium Silver Iballium Tim Asmadium Isme Cyamide	37 30 14 18 11	
\$1 16 52 16 16 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	: ! !	6 ZB 1 95	<b>)</b> 91	۶6		61	01	\$2		ll			01	<b>\$</b> E	Silver Tin Vanadium Innc	37 30 14 18 11	
\$1 16 52 16 16 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	: ! !	6 ZB 1 95	<b>)</b> 91	۶6		61	01	\$2		ll			<b>6</b> (	30	Silver Tin Vanadium Innc	37 30 14 18 11	
51 18	: ! !	6 ZB 1 95	<b>)</b> 91	۶6	82	-	01	\$2		ll					Silver Ihallium Tin	41 81 11	
18	: ( <b>b</b>	1 15	191		82	3265									Silver	81 /1	
276	Lit	1 15	191		82	3265	201								213461	£1	
216 456 501 8 39 8 3050 15320 22 20 13 17 12 17 5 17	Lit	1 15	191		92	3285	<b>2</b> 01								_	_	
276	Lit	1 15	191		82	3265	201								2616#INT	91	
276	Lit	1 15	191		82	3265	201										
216 456 501 8 39 8 3079 15320 20 20 13 49 12 49 5 5	Lit	1 15					<b>374</b>	17	9.7	12	30	30	ZL	8	Mickel	12	
456 501 ft	I	1 15		4.		1.0				5.0	1.0	2.2			Mercury	*1	
19 8 15320 22 20 13 20 12 19 5 2	I		AT	01	10	691	**	\$\$Z	. 242	109	288	444	LLS	112	asaurbuty	12	
12 20 20 20 20 20 20 20 20 20 20 20 20 20			Pi.	15	15	19	101	1 6	1 21	528 B	125 8	1 (01	1 01	15	F694	13	
22 20 1 12 17 1 2 19		9522	028	9001	1200	11934	2294	19022	12847	30000	55426	13392	2484	1339	Meni	11	
91 21 b 2		ý.	01	101	28	141	\$01	ZI		621	24	**	0.2	7	Copper	10	
• z		2	,			6	6	•				11	ç	•	116603	6	
	ľ	ý		٤		01	Çī	91		\$1	22	165	\$\$	l	Chrosine, trivilent		
							₹			•	ŧ	Z	•		autabi.)	_	
															90 ton	-	
															Berviltue	-	
228 159		71	120	145	114	165	145	LAT	. 41)	145	303	113	<b>tt</b> .	761	Darius	-	
1 7		1.2	1 (	1 87	1 66	511		1 5	1 7	A 7		1 4	1 7	1 2	31 <b>461.7</b> 4	_	
							25								August 1 mg	٠.	
2002 . 2012	916	165¢	4763	8771	1150	7280	2502	L6901 .		7,001	2709		222		suniou[A	-L	
/9:11 2 98:1	8 - 91 - 21	99-51-21	15-12-86	99-11-21	98-71-21	15-15-00	15-15-89	15-15-09	15-15-89	19-22-1	1-15-03	15-11-03	13-11-81	13-13-86	437JMVS 3194	ı	
.01 9		ک ای ک ای	0-10,	1030.	10. 30.	.\$1\$	.515	.655	.5 .7	10, 59,	.01-0	,91-0	.01-0	1252.	HT430 3JMAZ		
	3- 8N- 3G	90-743-09	8C-111-02	1 01-17-30	69-11-30	DC-12-04	DC-F3-02	20-11-34	+ 10-61-36	DC-K2-23	DC-K3-32	90-K1-08	PC-12-12	DC-15-15	ENNETE INVEST		
d 3118 b		N 3115	N 311S	1 311S	1 3115	1 3115	1 3115	1 3115		211E K	, SIJE K	1 3115		( 3115	3419	 2	

Subsurface Soil Inorganics

	eut.	SITE	SITE P	SITE	SITE	SITE 0	SITED	SITE	SITE O	SITE O	FWK	SITE O	0 3112	SITE 0	SITEO	SITEO
	SAMPLE MUMBER	DC-P2-54	BC-P5-55	BC-P5-54 1	BC-01-59	BC-D2-60	BC-03-41	DC-04-62	DC-05-43	BC-05-64 B	BC-06-65 +	9C-06-66	DC-09-72	00-69-73	DC-010-74	DC+019-75
	SAMPLE DEPTH	5232.	10" -25	1052.	15' -25'	5020.	1050,	0-10	8.5'-20'	0.5'-20'		15"-25"	0-10.	151-201	51-101	197-157
	BATE SAMPLED	2-11-07	2-12-87	2-12-07	2-16-87	2-17-07	2-17-87	2-17-07	2-17-87	2-17-87	2-19-97	2-18-07	2-26-07	2-26-87	2-26-97	1-26-87
·		1274	B136	2530	2023	1923	3784	5885	3232	3041	4215	2148	4902	2249	2028	2114
	7 Antioony															
	3 Arsenic — 4 Darium		3 f	4 A	57		12[ ···	214	3 R 106	101 7 M	9 K	2 H	6 R	3 H 125	. / H	: 45
	5 Beryllium		•,	***	•			211	100	141	711		,	***	•••	••
	i Baron															
	7 Cadeiva							31			2		4		11	
	8 Chronium, trivalent	3	14	10	5	4	•	10	7	6	10	3	13	6	22	•
	7 Coball															
	10 Copper		16	24				205	7		33		39		341	13
	II Irea	4131	15307	13000	\$230	5705	7548	11057	9902	6232	12658	4815	11793	7580	11910	:648
	12 Lead	4 1		90 L	3.1	4 1		147 1	7 1	11	54 1	4 1	10 1	5.1		
	13 Hangadese	9.6	423 1	710 1	107.1	106 1	522.1.	6.3	207 \$	107 \$	357 \$	79 1	190 1 1.7	152 ¢ 0.3	206 8 1.9	101
	14 Hercury 15 Mickel	7.8	15 1	23 1				45 1	11 4	10 1	15 4		38	0.3	136 1	11
	16 Selenius		., ,				-	•••			., .		,,			•
	17 Silver															
	10 Thallsum															
	19 · Tin	· · · · · · -														
	20 Vanadium		22	14			13	18			15		19		15	
	21 line	17 1		74 1	10 1	18 1	54 6	1398	37 1	35 1	181 1	17 #	277	30 1	188 1	43
	77 Evanide	12	15					•								
	72 Evanide	13	15				,	٠								

#### APPENDIX E

# SUMMARY TABLES FOR SITE-SPECIFIC CONTAMINANT LOADING TO THE MISSISSIPPI RIVER

Table E-1

CONTANINANT LOADING TO RIVER DUE TO MOBISONTAL FLOW IN SITE G

	Area (Et ² )	Morisontal Flow Bate Q (ft ³ /day)	TOCs*  Ave. Cenc. (ug/L)	Loading to River (1b/day)	Volatiles  Ave. Conc. (ug/L)	to River	Corcinogonic PMAn** Ave. Conc. (ug/L)	Loading to River (1b/day)	Hon-Carcinogenic PHAs**  Ave. Conc.  (ug/L)	Loading to River (1b/day)	Total PHAse's Loading to River (lb/day)	Total PCBs  Ave. Conc.  (ug/L)	Loading to River (lb/day)
January	2,420.90	-13.00	15,129.6	-3.03 x 10 ⁻²	2,906.5	-2.50 x 10 ⁻³	4.75	-4.10 x 10 ⁻⁶	MD		-4.10 x 10 ⁻⁶	•3	-7.16 x 10 ⁻⁵
February	2,370.68	-14.04	35,129.6	-3.06 x 10 ⁻²	2,986.5	-2.62 x 10 ⁻³	4.75	-4-17 x 10 ⁻⁶	MD		-4.17 x 10 ⁻⁶	63	-7.20 x 10 ⁻⁵
March	2,473.61	-9.09	35,129.6	-2.17 m 10 ⁻²	2,986.5	-1.05 x 10 ⁻³	4.75	-2.94 x 10 ⁻⁶	MD		-2.94 x 10 ⁻⁶	•3	-5.13 x 10 ⁻⁵
April	2,431.51	-6.57	15,129.6	-1.44 x 10 ⁻²	2,986.5	-1.23 x 10 ⁻³	4.75	-1.95 x 10 ⁻⁶	MD		-1.95 x 10 ⁻⁶	0.3	-1.41 x 10 ⁻⁵
Rey	2,652.55	-3.10	35,129.6	-6.96 x 10 ⁻³	2,986.5	-5.94 x 10 ⁻⁴	4.75	-9.44 x 10 ⁻⁷	<b>ND</b>		-9.44 x 10 ⁻⁷	8.3	-1.65 m 10 ⁻⁵
June	2,736.76	-4.38	35,129.6	-9.12 m 10 ⁻³	2,946.5	-0.10 a 10 ⁻⁴	4.75	-1.30 x 10 ⁻⁶	<b>W</b> D		-1.30 x 10 ⁻⁶	<b>a</b> 3	-2.27 x 10 ⁻⁵
July	2,747.29	-0.24	35,129.6	-1.61 x 10 ⁻²	2,986.5	-1.54 x 10 ⁻³	4.75	-2.45 x 10 ⁻⁶	ND		~2.45 ± 10 ⁻⁶	<b>83</b>	-4.27 x 10 ⁻⁵
August	2,663.00	-13.65	35,129.6	-3.04 m 10 ⁻²	2,986.5	-2.30 x 10 ⁻³	4.75	-4.11 x 10 ⁻⁶	MD		-4.11 x 10 ⁻⁶	0.3	-7.10 x 10 ⁻⁵
September	2,494.66	-17.46	35,129.6	-3.63 a 10 ⁻²	2,946.5	-3.26 x 10 ⁻³	4.75	-5.10 x 10 ⁻⁶	<b>#</b> D		~5.10 x 10 ⁻⁶	63	-9.06 x 10 ⁻⁵
October	2,420.90	-16.95	35,129.6	-3.72 m 10 ⁻²	2,946.5	-3.16 x 10 ⁻³	4.75	-5.01 x 10 ⁻⁶	₩D		-5.03 x 10 ⁻⁶	83	-0.79 x 10 ⁻⁵
Pevember	2,473.61	-12.37	35,129.6	-2.72 x 10 ⁻²	2,946.5	~2.31 x 10 ⁻³	4.75	-1.67 x 10 ⁻⁶	MO		-3.67 x 10 ⁻⁶	<b>63</b>	-6.42 x 10 ⁻⁵
December	7,484.14	-11.92	35,129.6	-2.62 x 10 ⁻²	2,906.5	-2.22 x 10 ⁻³	4.75	-3.54 a 10 ⁻⁶	WD		$-3.54 \times 10^{-6}$	0.3	-6.16 g 10 ⁻⁵

^{*} Total organic carbon.

Megative sign designates contaminant signation toward the river.

^{**} Polymuclear ecometics.

MD Not detected.

Table E-2
CONTANINANT LOADING TO RIVER DUE TO MOBISORTAL FLOW IN SITE N

		Notisental	TOC#*	Loading	Volatiles	Losding	Carcinogenic PRAs**	Looding	Non-Carcinogenic PMAs**	Loading	Total PMAs**	Total PCSs	Loeding
	Area	Flow Bate Q	Ave. Comc.	to River	Ave. Coac.	to Miver	Ave. Conc.	to Siver	Ave. Cenc.	to River	Loading to	Ave. Conc.	to Miver
	(et²)	(Et ³ /day)	(ug/L)	(lb/day)	(ug/L)	(lb/day)	(w <b>q</b> /L)	(lb/day)	(ug/L)	(ib/day)	River (10/day)	(ug/L)	(lb/day)
Jenusry	6,612.66	-0.463	12,270.20	-3.57 x 10 ⁻²	5,961.60	-1.74 x 10 ⁻²	<b>PD</b>		)	-6.72 x 10 ⁻⁶	-0.72 x 10 ⁻⁶	10.4	-3.02 x 10 ⁻⁵
february	0,536.10	-0.504	12,276.20	-3.87 m 10 ⁻²	5,901.60	-1.40 m 10 ⁻²	MD		3	-9.45 x 10 ⁻⁶	-9.45 x 16 ⁻⁶	10.4	-3.28 a 10 ⁻⁵
Narch	4,797.14	-0.369	12,274.20	-2.63 K 16 ⁻²	5,941.40	-1.10 x 10 ⁻²	***		3	-6.92 x 10 ⁻⁶	-6.92 x 16 ⁻⁶	10.4	-2.40 x 10 ⁻⁵
April	0,502.16	-0.275	12,270.20	-2.11 x 10 ⁻²	5,901.60	-1.03 x 10 ⁻²	WD		3	-3.46 x 10 ⁻⁶	-3.44 x 10 ⁻⁶	10.4	-1.79 x 10 ⁻⁵
Rey	9,050.09	-0.127	12,270.20	-9.75 x 10 ⁻³	3,901.60	-4.75 x 10 ⁻³	MD		3	-2.30 x 10 ⁻⁶	-2.30 g 10 ⁻⁶	10.4	=0.26 a 10 ⁻⁶
June	9,260.38	-0.167	12,276.26	-1.20 m 10 ⁻²	3,901.60	-6.24 x 10 ⁻³	NO		3	-3.13 x 10 ⁻⁶	~3.13 x 10 ⁻⁶	10.4	-1.09 a 10 ⁻⁵
July	9,564.73	-6.287	12,276.26	-2.26 x 16 ⁻²	5,961.60	-1.07 x 10 ⁻²	=0		3	-5.38 x 16 ⁻⁶	-5.38 x 10 ⁻⁶	10.4	-1.87 x 10 ⁻⁵
August	9,150.21	-0.456	12,278.20	-3.51 x 10 ⁻²	5,901.40	-1.71 ± 10 ⁻²	MO		3	-8.59 x 10 ⁻⁶	-8.59 x 10 ⁻⁶	10.4	-2.98 x 10 ⁻⁵
September	9,042.74	-0.597	12,270.20	-4.56 x 10 ⁻²	5,941.60	-2.23 x 10 ⁻²	<b>#</b> 0		3	-1.12 x 10 ⁻⁵	-1.12 x 10 ⁻⁵	10.4	-3.08 x 10 ⁻⁵
October	8,735.69	-0.577	12,278.20	-4.43 x 10 ⁻²	5,901.40	~2.16 x 10 ⁻²	ND		3	-1.00 x 10 ⁻⁵	-1.00 x 10 ⁻⁵	10.4	-3.75 x 10 ⁻⁵
Beverber	0,009.21	-0.461	12,376.20	-3.55 x 10 ⁻²	5,941.64	-1.73 x 10 ⁻²	<b>#6</b>		3	-0.66 x 10 ⁻⁶	-0.66 x 10 ⁻⁶	10.4	-3.00 x 10 ⁻⁵
Decumber	9,012.03	-0.424	12,270.20	-3.25 x 10 ⁻²	5,981.60	-1.59 x 10 ⁻²	MD.		)	-7.95 x 10 ⁻⁶	-7.95 a 10 ⁻⁶	10.4	-2.76 m 10 ⁻⁵

^{*} Total organic carbon.

Megative sign designates contaminant migration toward the giver.

^{**} Polyaucless sressics.

ND Not detected.

Source: Ecology and Environment, Inc. 1900

Regetive sign designates contaminent nigration toward the river.

ND Not detected. ** Pelynuclear arematics. · Total organic carbon.

CONTANINANT LOADING TO RIVER DUE TO HORISONTAL FLOW IN SITE !

		Serisental	100.	<b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1 <b>F</b> 1	Velatile.	Loading	Carcinogonic Phases Loading	Leading	Mon-Cercinogenic PNAs++ Loading	Patheor	Total PRAs Total PCBs	Total PCBs	Loading
	<b>*</b>	Flow Bate 0	Flow Boto Q Ave. Came.	to Biver	Ave. Cenc.	to River	Ave. Cesc.	to Biver	Ave. Conc.	to Biver	co petheod	Ave. Conc.	to River
	(e,²,	(ft ³ /day)	(ug/L)	(1b/day)	(14/1)	(1b/day)	(ug/L)	(1b/doy)	(1 <b>4/L)</b>	(15/day)	River (1h/day) (ug/L)	(ug/L)	(16/day)
Jenuery	0.102.99		5,736.63	-1.50 # 10-2	1,204.5	-J. JJ R 10 ^{-J}	5	!	1.10	9.34 . 10-6	-9.34 # 10 ⁻⁶	8	
Pebruary	0.060.17	-0.467	5,716.61	-1.67 x 10 ⁻²	1,204.5	-3.53 z 10 ⁻³	<b>5</b>	:	3.38	-9.87 # 10 ⁻⁶	-9.07 x 10-6	N.	
Merch	0.190.34	-0.344	5,736.63	-1.31 ± 10 ⁻²	1.204.5	-2.59 a 10 ⁻¹	3	1	3.30	-7.27 H 10 ⁻⁶	-7.27 E 10 ⁻⁶	<b>B</b>	
4.:1	9,182.99	-0.254	5,736.63	-9.11 a 10 ⁻³	1,204.5	-1.91 * 10-3	8	}	3.30	-5.37 x 10 ⁻⁶	-5.37 x 10 ⁻⁶	8	
May	0,397.51	-0.129	5,736.63	-4.63 E 10 ⁻³	1,204.5	-9.71 z 10 ⁻⁴	3	1	3.30	-2.73 x 10 ⁻⁶	-2.73 x 10 ⁻⁶	₹ .	
J 1570	1,609.62	-0.136	3,736.63	-9.99 a 10 ⁻³	1,204.5	-1.17 & 10-1	8	:	3.36	-3.30 x 10 ⁻⁶	-3.30 m 10 ⁻⁶	8	
July	1,112.45	-0.364	5,736.63	-9.47 x 10 ⁻³	1,204.5	-1.99 x 10 ⁻³	8	1	3.30	-5.50 x 10 ⁻⁶	-5.50 x 10 ⁻⁶	8	
yeaf	0.612.06	-0.431	5,736.63	-1.55 x 10 ⁻²	1,201.5	-3.24 . 10-3	8	1	3.30	-9.10 ± 10-6	-9.10 H 10 ⁻⁶		;
3.040.1	0,303.00	-0.536	5,736.63	-1.99 = 10-3	1,204.5	-4.19 . 10-3	8	1	3.30	-1.17 x 10-5	-1.17 a 10 ⁻³	5	;
October	0,190.34	-0.349	5,736.63	-1.97 = 10-2	1,204.5	1.97 . 10-2	8	1	3.30	-1.16 a 10 ⁻⁵	-1.16 m 10-5	5	
Ne vento r	0,229.00	-0.420	5,716.61	-1.91 n 10 ⁻²	1,204.5	-).16 R 10 ⁻⁾	3	;	<b>3.31</b>	-0.07 ± 10 ⁻⁶	-0.07 m 10 ⁻⁶	8	:
December.	0.459.33	-0.399	9, 736.63	-1.27 1 10-2			1						

Table E-1

Table E-4

CONTANIHANT LOADING TO RIVER DUE TO MORISONTAL FLOW IN SITE L.

		Mortsontal	100		Volatiles	telbes.	Carcinegenic PHAs**	Looding	Carcinegenic Pula.* Leading Hon-Carcinogenic Pula.*	Loading	Total PRAst Total PCBs	Total PCBs	Coeding
	Area	Flow Rate Q Ave. Conc.	Ave. Comc.	to Biver	AVO. CORC.	to Biver	Ave. Conc.	to Biver	Ave. Conc.	to Biver	Loading to Ave. Conc.	Ave. Comc.	to Biver
	(43)	(tt. ³ /4by)	( <del>1</del> /1)	(15/day)	(1/6n)	(1b/4ay)	(n6/L)	(18/4ey)	(n\$/L)	(1b/dey)	(1b/dey) River (1b/dey) (ug/L)	(7/6n)	(1b/day)
Jenuary	2,005.57	-10.01	2.60	-1.76 s 10 ⁻³	1,390	-9.41 = 10 ⁻⁴	2		Q	;		2	;
Pobruery	1,976.40	-11.27	2,602	-1.43 # 10-3	1.39	-9.79 ± 10 ⁻⁴	2	i	q	;	1	9	1
March	2,022.24	1.6	2.662	-1.30 s 10 ⁻³	1.390	-7,30 a 10 ⁻⁴	•	;	<b>Q</b>	;	;	2	1
11104	1,997.24	4.39	2,662	-1.04 x 10-3	1,394	-5.55 R 10 ⁻⁴	2	1	9	;	{	9	;
Rey	2,420.85	-3.87	2,682	-6.29 # 10 ⁻⁴	1,39	-3.36 x 30"4	2	!	2	1	;	2	;
340	2,226.41	1.1	2,602	-6.52 a 10 ⁻⁴	1,396	-3.46 a 10 ⁻⁴	9	}	Q	1	1	9	†
July	2,246.29	4.11	2,602	-1.09 H 10-3	1.30	-5.04 x 10"4	2	;	2	1	}	2	;
August	2,175.62	-10.00	2,662	-1.77 a 10 ⁻³	1,390	-0.45 E 10-4	2	1	2	1	1	9	1
Beptember	2,000.57	-13.94	2,662	-2.27 & 10 ⁻³	1,39	-1.21 a 10 ⁻³	2	;	g	;	1	2	1
October	2,015.29	-13.30	2,402	-2.20 s 10 ⁻³	1, 190	-1.17 s 10 ⁻³	9	}	9	;	;	2	1
1.44.4	2,030.97	-10.36	2.662	-1.72 s 10 ⁻³	1, 396	-9.17 × 10 ⁻⁴	2	1	•	;	-	9	;
December	2,044.46	-9.01	2,602	-1.60 # 10 ⁻³	1,380	-0.52 x 10 ⁻⁴	<b>a</b>	ł	9	;	i	•	i

. Tetal organic carbon

.. Polynuclear erometics.

MD Hot detected.

Regative sign designates contaminant migration toward the civer. Bources Ecology and Environment, Inc. 1986.

Table E-5

CONTANINANT LOADING TO RIVER DUE TO VERTICAL PLOW IN SITE G

		Vertical	TOC+ *	Loading	Velatiles	Loading	Carcinogenic PMAs**	Looding	Non-Carcinogenic PMAs**	Loading	Total PMAs**	Total PCDs	Loading
	Area	Flow Rate Q	Ave. Conc.	to River	Ave. Cenc.	to Biver	Ave. Conc.	to Miver	Ave. Conc.	to River	Loading to	Ave. Conc.	to River
	(Et ² )	(Et ³ /day)	(ug/L)	(lb/day)	(ug/L)	(lb/dey)	(ug/L)	(lb/day)	(ug/L)	(1b/dey)	Biver (1b/day)	(ug/L)	(lb/day)
Jenus Ly	79,751	8,670.29	35,129	19.00	2,986.5	1.61	4.75	2.57 = 10 ⁻³	#D		2.57 x 10 ⁻³	93	4.49 x 10 ⁻²
February	79,751	8,826.04	35,129	19.14	2,986.5	1.64	4.75	$2.61 \times 10^{-3}$	WD		2.61 x 10 ⁻³	83	4.57 s 10 ⁻²
Nerch	79,751	0,026.04	15,129	19.34	2,986.5	1.64	4.75	2.61 x 10 ⁻³	MD		2.61 x 10 ⁻³	43	4.57 ± 10-2
April	79,751	3,841.92	35,129	6.42	2,986.5	6.32	4.75	1.14 x 10-3	WD		1.14 x 16 ⁻³	o,	1.99 x 10 ⁻²
May	79,751	7,707.69	33,129	17.06	2,906.5	1.45	4.75	2.31 x 10-3	IND		2.31 x 10 ⁻³	83	4.03 x 10 ⁻²
June	70,751	8,826.04	35,129	19.34	2,986.5	1.64	4.75	2.61 # 10 ⁻³	mp		2.61 x 10 ⁻³	43	4.57 x 10 ⁻²
July	79,751	0,306.06	35,129	10.20	2,906.5	1.55	4.75	2.46 x 10 ⁻³	mo		2.46 x 10 ⁻³	83	4.30 m 10 ⁻²
August	70,751	6,230.15	35,129	13.65	2,986.5	1.16	4.75	1.45 x 10 ⁻³	mp		1.05 ± 10 ⁻³	43	3.22 m 10 ⁻²
1 optomber	79,751	5,191.79	35,129	11.37	2,986.5	9.97	4.75	1.54 m 19 ⁻³	mb		1.54 x 10 ⁻³	43	2.49 m 10 ⁻²
October	79,751	6,749.33	35,129	14.79	2,986.5	1.26	4.75	2.00 a 10 ⁻³	₩D		2.00 ± 10 ⁻³	0.3	3.49 m 10 ⁻²
Bevenher	79,751	0,026.04	35,129	19.34	2,906.5	1.64	4.75	2.61 x 10 ⁻³	WD		2.61 x 10 ⁻³	43	4.57 x 10 ⁻²
December	79.751	9,343.22	35,129	20.47	2,986.5	1.74	4.75	2.77 s 10 ⁻³	MD		2.77 ± 10 ⁻³	83	4.04 x 10 ⁻²

^{*} Total erganic carbon.

Regetive sign designates contaminent migration toward the cives.

^{**} Polymuclest arematics.

MP Not detected.

9-8 +14-7

COMPANIEMENT LOADING TO RIVER BUE TO VERTICAL FLOW IN SITE M.

AVe. Cenc.

Suipeel

to Biver Ave. Comc.

00113010V

to Binet

Cottcimogenic Pales. Leading Hon-Cottcimogenic Pales. Leading

Ave. Conc.

sulpeol

Lotel PRAS. Total PCBs

	(,32)	(\$ep/_2\$)	( <b>%/6</b> n)	(19/40)	(7/8n)	( fp/qt)	(7/8n)	( <b>5p\qe</b> k)	(7/8n)	(\$ <b>*P/Q</b> ()	Miver (1b/dey)	(7/6n)	(fp/qsk)
Azenee	995'911	91.969,61	065,51	99 01	9-106'5	60.2	<b>QN</b>			E-01 T 95'E	8.96 a 10°-5	<b>)</b> · 01	C-01 = 99.9
optnozi.	996'911	14,414.03	015,51	11.04	9"106"5	0C*S	<b>an</b>		•	C-01 # 07.5	C-01 × 07.5	<b>9</b> · 01	C-OL A SE.P
do sel	995'911	14,616.61	07£,£1	10:11	9:106'5	96.8	am		¢	1-01 = 10-1	€-01 = 0f.£	F ' 0 T	C: 01 # 5C:6
ris.	995'911	92.500.2	075,51	£0. €	9"186"\$	10.1	Q#		ť	θ= 61 ± 7€. €	₆₋ 01 # 6€16	<b>₽.0</b> 1	(-01 x 65.6
Awy	006'911	99.159,01	445,51	61.0	9118615	36.6	<b>GM</b>		r	C-01 # 66'1	C-01 = 66'1	10.4	(-01 × 60.9
• un(	116,540	12,097.40	465,51	00-6	9"106"6	10.5	an.		¢	3:41 × 10-2	5-01 # 10°E	+:01	(=01. # 4C:0
ng A	116,540	00.T00,£1	475,52	60.6	9"196"5	10.5	Que		t	3.41 ± 10.5	2-41 # 10-2	P * 0T	C=01 × τC.0
genāny	176,540	< 61.00C,11	0CE, E1	14.4	9110616	\$5.4	OM .		C	2.13 × 10 ⁻³	2-01 × 61-6	<b>**</b> •1	(-01 # #E'L
1 odne 2 del	996'911	99.159.01	065,51	£1.0	9-106'6	96 · E	an		c	E-01 × 66:1	C-01 # 66'E	9.01	(=01 = 60'9
1040120	116,540	£1.00€,11	13,270	16.4	9"106"5	<b>65.</b> 4	<b>a</b>		¢	5"17 # 10 _{~2}	8:13 ± 10-2	) + OT	(=01 = 00.C
10 <b>9</b> 00000	996,811	49.740,51	13,276	11.4	9-116'5	10.0	<b>di</b>		¢	3:41 # 10 ₌₃	3:41 = 10-3	<b>F</b> 101	(-01 × 16.0
100m030g	096'911	91.969,61	075,61	99.01	9.104,2	60.6	QM		6	C-01 x 96.5	C-01 = 32.5	F. 01	E-01 # 98.8

[.] Total ergenic cerbon.

Mognitive aign designates contaminant migration toward the civet.

Flow Rate Q Ave. Conc.

Verticel

^{..} Polymuclose stomotics.

TO Not detected.

Source: Ecology and Environment, Inc. 1968.

Regative sign designates cantaminant migration toward the river.

ND Bot detected. ** Polynuclear arometics. · Tetal organic carbon.

Table E-7

CONTAMINANT LOADING TO RIVER DUE TO VERTICAL FLOW IN SITE !

Verticel

1000

-

Velatilee

Pelpear

Corcinegenic Pake. Leading

Hon-Carcinogenic PHAR**

Patheon

Total PHAn .. Total PCBs

Loading

	A	Flow Rate Q Ave. Conc.	Ave. Cenc.	10418 03	Ave. comc.	20418 63	WAS. COMC.	Section 63	AVE. CORC.	10ATE 01	Loading to Ave. Conc.		to Biver
	(m²)	(ft ³ /day)	(ug/L)	(1b/day)	(1/gs)	(1b/day)	(uq/L)	(1b/day)	(uq/L)	(lb/day)	(lb/day) Biver (lb/day) (ug/L)	(11/L)	(16/dey)
Jenuery	164,441	10,190.69	9,716.6	4.91	1,204.5	1.17	8	l	3.30	3.04 × 10 ⁻³	1.04 × 10 ⁻³	8	<u> </u>
Pobruory	164,441	19.269.20	3,736.6	•. ••	1, 204.5	1.45	5	1	3.30	4.46 # 10 ⁻³	4.06 m 10 ⁻³	8	i
March	164,441	19, 269. 20	3,736.6	•	1,204.5	1.43	5	!	3.34	4.06 x 10 ⁻³	4.06 x 10 ⁻³	8	;
April I	164, 641	7,600.63	5,716.6	2.72	1,204.5	0.57	8	;	3.30	1.60 x 10-3	1.6 = 10-3	<b>8</b>	<u> </u>
Yes	164,441	14,907.15	3,736.6	5.16	1,204.5	1.13	8	1	J. J.	).16 s 10"3	3.16 a 10 ⁻³	5	;
June	164,441	10.190.69	5,716.6	18.9	1,204.5	1.33	3	1	3.30	3.00 x 10-3	).00 m 10-)	8	:
July	164, 641	17,128.17	5,716.6	6.13	1,204.5	1.29	8	1	J. J.	3.61 H 10-3	3.61 × 10-3	5	;
August	164, 441	11,907.15	5,736.6	9. 16	1,204.5	1.13	8	1	3.30	).16 ± 10 ⁻³	3.16 x 10-3		:
September	164, 441	13,916.64	5,736.6	:	1,204.5	1.05	8	1	3.38	2.93 x 10 ⁻³	2.93 x 10 ⁻³	8	;
October	100,001	14,987.13	5,736.6	5.16	1,204.5	1.13	8	;	J. 18	3.16 H 10-3	3.16 m 10-3	5	1
Hevenher	111,111	14,194.69	5,736.6	6.31	1,204.5	1.11	3	1	3.30	3.44 x 10 ⁻³	3.44 x 10 ⁻³	5	1
December	144.441		1 716 6	•	1,204.5	1. 5	<b>5</b>	!		4.84 - 10-)		;	

Regative sign designates centaminant migration toward the river.

MD Not detected. ** Polynuclear arematics.

Source: Ecology and Environment, Inc. 1988.

Table E-0

CONTAMINANT LOADING TO RIVER DUE TO VERTICAL FLOW IN SITE L

	<b>&gt;</b>	Flow Boto Q	Ave. Cesc.	to Biver	Ave. Conc.	to Biver	Ave. Cenc.	10 11 01	Ave. Conc. to hiver Loading to Ave. Conc. to hive	to Miver	Loading to	Ave. Conc.	
	(r.²)	(ft ³ /day)	(1/bn)	(lb/day)	(17/Pn)	(lb/day)	(ug/L)	(lb/dey)	(ug/L)	1 Amp/41 )	(lb/day) River (lb/day) (ug/L)	(14/£)	
Jenusty	25,670.5	2,941.14	2,602	1.77 1 10-1	1.390	2.55 ± 10-1	3	:	a D		1	80	
Poblucy	25,670.5	3,176.17	3,602	5.15 x 10 ⁻¹	1.390	3.75 x 10 ⁻¹	7	;	<b>B</b>	;	1	8	Į
Rosch	35,670.5	3,176.17	2,602	5.19 a 10 ⁻¹	1,390	2.75 a 10-1	<b>3</b>	;	<b>8</b>	;	1	8	:
April 1	25,670.5	1,111.45	2,602	1.07 . 10-1		1.00 = 10-1	<b>8</b> .	1	<b>B</b> D	<u> </u>	1	7	!
Rey	25,670.5	2,340.34	2,602	3.00 E 10 ⁻¹	1, 390	2.03 . 10-1	8	1		;	1	5	
June	25,670.5	2,001.00	2,602	4.61 a 10 ⁻¹	1,390	2.46 × 10-1	8	}	ND D	;	1	B B	1
July	23,670.5	2,141.00	2,602	1.41 1 10-1	1,390	2.46 # 10 ⁻¹	8	:	<b>T</b>	;	;	<b>8</b>	:
yadest	25,670.5	2,140.14	2,602	3.00 a 10 ⁻¹	1.39	3.03 x 10-1	8	:	80	;	1	5	:
Soptomber	25,678.5	2,171.17	2,602	3.53 x 10 ⁻¹	1.110	1.44 # 10-1	8	1	<b>3</b>	;	ì	8	;
October	25,670.5	2,340.34	2.602	3.00 : 10-1	1, 190	2.03 # 10-1	3	;	<b>3</b>	;	1	5	;
To vestor	15,678.5	2,841.00	2,602	4.61 x 10 ⁻¹	1,390	2.46 . 10-1	8	!	*	1	1	5	:
December	25,670.5	J,	2,601	4.00 x 10-1	1, 190	3.61 . 10-1	3	:	8	:	:	<b>8</b>	:

: ::::

CONTANIMANT LEADING TO MIVER DUE TO MORISONTAL FLOW AT SMALLOW SOME IN SITE O***

			TOCs .		Velat i lee							Total PCBs	
			Weighted.	Leedlay	Welghted.	Leading	Carcinogenic Plike" Laading	Leeding.	Hon-Carcinogenic Phas.	Loading	Total PHAs**	We ight of	Loading
Y.	:	Area flow Bate Q Ave. Cenc.	Ave. Conc.	to Biver	te Biver Ave. Cenc.	to Biver	Weighted Ave. Conc. to Biver	to Biver	Melghted Ave. Comc.	to Biver	Looding to	AVe. COAC.	to Biver
2	r ₂ )	(Et. ² ) (Et. ³ /day) (ug/L)	(mg/L)	(16/day) (uş/L)	(ng/c)	(15/day)	(n\$/£)	(1b/day)	(mg/L)	(1b/day)	(lb/day) River (lb/day) (ug/L)	(1/ån)	(1b/dey)
January 95	19,103	-700.69	133.000	4.51	115,000	5.63	2	;	QII	1		9	
Pobruery 94	94,729	-672.50	133,000	-5.35	119,000	-5.0	2	1	2	ì	;	2	;
Merch 10	10,260	-133.03	133,000	1.1-	111.000	16.9	9	;	2	1	;	2	ł
April 103	103.660	159.37	132,000	2.8	119,000	2.67	2	;	Q#	;	;	2	1
May 111	111,633	339.50	132,000	1.11	119.000	3.49	9	:	2	1	;	2	;
June 111	111,370	-44.51	132,000	-6.33	119,000	•.33	9	:	.≘	1		2	;
July 107	107,547	-431.70	132,000	-1.73	119,000	-3.36	2	;	2	;	;	2	;
August 99	189.	99,691 -917.16	132,000	-7.57	119.000	-6.82	2	;	2	1	;	•	;
September 94	- 821'1	94,128 -1,635.41	132,000	10.34	119,000	-7.70	2	ŀ	2	:	1	2	;
October 93		11,113 -075.27	132,000	.1.23	119,000	-4.51	e	;	9	;	;	2	1
Beverber 19	.634	99,654 -310.09	133,000	-2.63	119,000	-2.37	2	;	2	;	;	<b>a</b>	1
December 100	.029	100,029 470.12	132,000	-1.6	119,000	-3.50	2	;	2	1	;	2	ì

· Total Organic Carbon.

.. Polynucles: srematics.

*** Date from memitering wells \$6-21, \$6-22, \$6-23, and \$6-24 vers used to calculate weighted everage

cencentrations.

MD Hot detected.

Regative sign designates contaminant migration toward the river.

1 - 1

Table 6-10

CONTAMINANT LOADING TO RIVER DUE TO MORIZOHTAL FLOW AT INTERNADIATE SOME IN SITE O...

			100.		Volatiles							Total PCBs	
			To ight od	Losding	Weight od	Losding	Cercinegenic PUAs** Loading	Loading	Hon-Carcinogenic PHAs**	feedbeel	Total PHAS''	We ight od	Pobling.
	Afee	Area Flew Bate Q Ave. Conc.	Ave. Conc.	to River	AVE. CORC.	to Biver	Weighted Ave. Conc. to Biver	to Biver	Welghted Ave. Conc.	to Biver	to ding to	Ave. Conc.	to Biver
	(44,2)	(ftt ₂ ) (ftt ₃ /46g) (ug/L)	(n\$/E)	(1 <b>b/day</b> ) (ug/L)	(n4/F)	(1b/dey)	(nå/L)	(1b/dey)	(n4/F)	(1b/day)	River (1b/day)	(n <b>ð</b> /F)	(1b/day)
Jeansty	\$2,363	-434.63	=	-0.00259	11	-0.001917	2	1	Q.	;	1	2	;
Pobruery	\$2.363	-171.70	•	-0.0023	z	-0.00163	2	;	<b>a</b>	;	;	2	}
Merch	92,363	-62.63	•	-1.00039	ĸ	-6.00020	2	1	9	}	}	9	1
April	\$2.363	178.03	•		=	•• . 00079	2	:	•	;	1	2	;
ž.	\$2,363	157.09	•		ĸ	10.000697	2	1	9	}	!	Q	1
3cm.	32,363	-26.95	•	-0.00013	Ľ	-0.00003	£	1	Q.	ì	}	9	ł
July	\$2,363	-219.93	•	-0.00133	ır	-0.000976	2	;	Q.	;	;	9	1
August	\$2,161	-441.75	•	-1.00	<b>~</b>	-0.00214	2	:	•	;	;	9	;
September	\$2,363	-576.00	•	-0.0036	ĸ	-0.00256	2	1	<b>Q</b>	;	;	2	;
October	\$2.363	-492.22	•	-0.0031	=	-0.00210	2	:	9	;	;	9	į
Personer	\$2,363	-167.57	•	-0.00104	=	-0.00074	2	;	9	1	;	98	}
December	\$2.363	-244.10	•	-0.00134	=	-6.00109	2	ł	9	;	ŗ	9	:

* Total ergenic carbon.

** Pelynucless scenatics.

*** Date from monitoring wells GAISB and GAISB (Garaghty a Miller 1984; 1984s) were used to calculate

weighted average calculations.

MD Mot detected.

Megative sign designates conteninant nigration toward the civer.

CONTAMINANT LOADING TO RIVER DUE TO HORISONTAL FLOW AT SMALLOW TONE IN SITE Q****

			1000		V-1-111							Total PCD.	
			# ighted	Lading	We I ght ed	Landing.	Carcinogenic Phase	-	Men-Curcinogenic PMAs""	Pulpeding	Londing Total PRAs Weighted	Welghted	Pelpror
	<b>&gt;</b>	Flow Bate Q Ave. Conc.	Ave. Cenc.	to Biver	Ave. Cenc.	to Biver	Weighted Ave. Conc.	to River	Meighted Ave. Conc.	to Biver	to River Loading to Ave. Comc. to River	Ave. Conc.	to River
	(et ² )	(ft ³ /day)	(14/L)	(1h/day)	(1/bn)	(1b/day)	(ug/L)	(lb/day)	(ug/L)	(lb/day)	(1b/day) Rivec (1b/day) (ug/L)	(ug/L)	(1b/day)
Januacy	103.370	-1,369.11	239	-0.02011	50	-0.01112	100	:	<b>10</b>	:	;	8	:
Pebruery	100,001	-867.42	235	-0.0127		-0.06700	8	;	8	;	1	8	:
March	135.036	743.21	215	•. • 1115	•	1.00636	8	1	86	}	1	5	;
40.11	146,401	1,551.05	235	0.0220	130	0.01261	8	1	8	;	;	5	1
Ray	150,763	10.61	255	0.01307	5	0.00723	8	;	# B	I	;	5	;
June	140,015	-267.55	215	-0.00393	5	-0.00217	8	:	MD.	i	;	8	1
AINC	129,257	-930.65	215	-0.01367	•	-0.00736	8	:	<b>8</b>	ŀ	!	5	:
August	200.549	-1,639.10	215	-0.0261		-0.01110	5	;	8	ŀ	;	<b>#</b>	1
September	99,198	-1,956.78	215	-0.0229	136	-0.01265	8	1		1	1	8	;
October	103,733	-1,130.66	205	-0.0166	÷	-0.00920	8	!	30	1	<b>!</b>	8	;
Bevenber	120.390	372.31	225	0.0055			8	I	<b>B</b>	1	;	8	!
December	121.359	-394.67	225	-0.0007		-0.0000	•	t	# °	:	:	<b>B</b>	1

* Yotal organic carbon.

** Pelynuclear arematics.

concentrations.

... Data from monitoring wells ET-09, EE-19, and EE-06 were used to calculate weighted average

Regative sign designates contaminant migration toward the river. MD Met detected.

Table E-12

CONTAMINANT LOADING TO RIVER DUE TO MORIZONTAL FLOW AT SHALLOW ZONE IN SITE R.**

			TOC+*		Volatiles							Total FCBs	
			Weighted	Loading	Weighted	Loading	Carcinogonic PHAs**	Losding	Mon-Carcinogenic PMAs**	Loading	Total PMAs**	Weighted	Loading
	Yt.ev	Flow Rate Q	Ave. Cenc.	to Biver	Ave. Comc.	to Biver	Weighted Ave. Conc.	to River	Weighted Ave. Conc.	to Biver	Loading to	Ave. Conc.	to River
	(ft ² )	(ft ³ /day)	(ug/L)	(1b/day)	(ug/L)	(lb/day)	( <b>49/L</b> )	(lb/day)	(ug/L)	(lb/day)	River (1b/day)	(ug/L)	(lb/day)
Jenuery	52,293	-452.30	12,510	-0.67	1,555	-0.00)	<b>50</b>		MD			<b>M</b> D	
February	54,492	~403.25	12,510	-0.31	1,355	-0.039	MD		<b>MD</b>			MD	
Morch	67,015	737.17	12,510	0.50	1,355	0.072	NO		<b>m</b> D			<b>₩</b> Đ	
Agril	72,456	1,060.00	12,510	0.04	1,555	0.1030	MO		MD			MD	
Rey	74,431	471.43	12,510	0.37	1,555	0.046	MD		MD			MD	
June	69,001	-230.50	12,510	-0.16	1,595	-0.622	WD		#0			MO	
July	64.149	-641.40	12,510	-0.50	1,555	-0.062	WD		WD			#D	
August	\$3,671	-953.50	12,510	-0.75	1,353	-0.091	<b>88</b>		MD			MD	
Reptember	49,210	-536.40	12,510	-0.42	1,555	-0.052	80	•	ND			MD	
October	51,400	-561.16	12,510	-0.44	1,555	-0.034	MD		<b>M</b> D			<b>MD</b>	<b>-</b> -
Mevember	63,717	522.47	12,510	0.41	1,555	0.051	<b>80</b>		MD			#D	
December	60,229	-361.37	12,510	-0.20	1,555	-0.035	<b>WD</b>		MD			<b>PD</b>	

^{*} Total Organic Carbon.

Megative sign designates contaminant migration toward the river.

^{**} Polymucion: Aromatics.

Data from monitoring wells P-1, P-7, P-11, B-26h, and B-28h (Goraghty & Hiller 1986; 1986s) were used to calculate weighted average concentrations.

MD Not detected.

Table 6-13

CONTAMINANT LOADING TO RIVER DUE TO MORISONTAL FLOW AT INTERMEDIATE SOME IN SITE A***

			700.		A-1111100							Total PCBs	
				betpeen	weighted	Leeding	Carcinogenic PMA	Perpending	Hon-Carcinogenic PMAs**	Perpen	Total PHAs** Weighted	We ight ed	Loading
	***	Flow Bote Q	Ave. Comc.	10 Miver	Ave. Comc.	to River	Weighted Ave. Conc.	to Biver	Weighted Ave. Conc.	to River	Londing to Ave. Conc.	Ave. Cenc.	to Biver
	3.	(ft ³ /day)	(1 <b>/</b> 1)	(1b/day)	(3/84)	(lb/day)	(ug/L)	(16/day)	(uq/L)	(15/day)	(lb/day) River (lb/day) (ug/L)	(1/gu)	(16/day)
January	107,700	-74,313	•,••	-01.79	4.44	-20.62	8	1	MD	:	-	5	;
Pobrusty	107,700	-23,494	. 998	-13.32	•	-6.57	8	ŀ	88	1	!	8	}
March	107,700	62,466	. 990	35.13	1,11	17.33	8	;		;	}	<b>B</b>	;
April	107,700	70,543	•. , , ,	39.67	•	19.57	8	;	8	1	}	8	;
Tay Y	107,700	30,04	., , ,	16.90	1, 11	•.54	8	:	8	:	;	Đ	1
Jun.	107,700	-17,771	. , , ,	9.99	•,••	-4.93	80	1	8	;	;	8	;
July	107,700	-12,003	. , , ,	-23.62	•	-11.66	<b>8</b> 0	1	N D	ł	;	8	;
August	107,700	-11,153		-46.03	•. • •	-11.11	;	;	#5	ì	1	8	;
a-pt-amer	107,700	-05,421	0,998	-40.19	::	-23.76	8	1	8	:	}	<b>5</b>	ŀ
October	107,700	-17,196		-20.00	*.	-10.31	80	;	8	!	1	5	1
Be venire r	107,700	10.463		27.25	•	11.45	8 6	;	8	1	;	<b>5</b>	:
Becesher	107,700	-21,560	0.990	-12.11	4.44	-5.96	8	;	B D	ì	;	8	1

^{*} Total Organic Carbon.

Mogntive eigh designates contaminant migration toward the river.

^{**} Pelyauciess Assmatics.

^{***} Date from monitoring wells GM278 and GM288 (Goraghty & Miller 1986; 1986a) were used to calculate velophted average concentrations.

MD Het Detected.

### APPENDIX F

# TOXICITY PROFILES FOR SELECTED CONTAMINANTS OF CONCERN

#### ARSENIC

#### Environmental Chemistry and Fate

Arsenic may be released to the atmosphere as a gas or vapor; or absorbed to particulate matter and transported to other media by dry or wet deposition (ATSDR 1987a). Because trivalent arsenic may undergo oxidation in the air, atmospheric arsenic is usually a mixture of trivalent and pentavalent forms. Most airborne arsenic is usually adsorbed on small diameter particulate matter. Photolysis is not considered to be an important fate process for arsenic.

Arsenic in surface water can undergo a complex pattern of transformations: oxidation-reduction, ligand exchange, biotransformation, and
precipitation and adsorption (Callahan 1979). As a consequence of these
reactions, arsenic is extremely mobile in aquatic systems, and riverborne arsenic is capable of being transported great distances. Factors
most strongly influencing the rates of these reactions include: Eh, Ph,
metal sulfide and sulfide ion concentrations, iron concentration, presence of phosphorus minerals, temperature, salinity, and distribution
and composition of biota (Callahan 1979).

Sorption onto clays, iron oxides, manganese compounds, and organic matter is an important fate in surface water, with sediment serving as a reservoir for most of the arsenic entering surface water. Sediment-bound trivalent and pentavalent arsenic, methylated by aerobic and anaerobic microorganisms, may be released back into the water column.

Soluble forms of arsenic adsorb to soil and travel with the soil matter with which they are associated. Shifts in oxidation state may occur in either direction, depending on the particular characteristics of the soil and groundwater. Volatilization of methylated arsenics from groundwater is possible.

Arsenic in soil is predominantly found in an insoluble, adsorbed form. Clay with high anion-exchange capacity strongly adsorbs pentavalent arsenic. Other important adsorption processes include complexation and chelation by organic material, iron, or calcium. Leaching of arsenic is usually important in the top 30 centimeters of soil, but may also be important at greater depth in sandy soils. Arsenate predominates in aerobic soils; arsenite in slightly reduced soils; arsine,

methylated arsenicals and elemental arsenics in very reduced conditions (e.g., swamps and bogs)(ATSDR 1987a).

As noted above, microorganisms may reduce and methylate arsenicals in water and soil, resulting in volatilization and emission to the air. The volatilization rate is heavily dependent on whether soil is oxygenated or anaerobic, the pH, and the microbe types and concentrations in soils.

In aquatic systems, bioconcentration of arsenic primarily occurs in algae and lower invertebrates, but biomagnification does not appear to be significant (Callahan 1979).

Plants may accumulate arsenic via root uptake, with uptake being dependent on the species, soil arsenic concentration, and soil characteristics.

#### Noncarcinogenic Effects

At high doses, arsenic compounds have been shown to produce acute and chronic toxic effects including irreversible systemic damage. The trivalent compounds are the most toxic and tend to accumulate in the body. Animal studies have shown that chronic arsenic exposure may cause body weight changes, decreased blood hemoglobin, liver damage, and kidney damage.

There is evidence that arsenic is an essential element enchancing growth and development in certain animal species, and it has been suggested that arsenic may be an essential element for humans (NAS 1980). Whether or not arsenic is an essential element is the subject of continuing research.

Teratogenic effects of arsenic compounds at relatively high exposure levels have been demonstrated in a number of animal species (EPA 1984f, ATSDR 1987a). Generally, these effects have been observed following parenteral (injection) administration; whereas, administration at lower doses by the more relevant oral route has not resulted in any significant reproductive or developmental effects.

#### Mutagenicity and Carcinogenicity

Arsenic has been shown to be mutagenic in several assay systems and to induce chromosomal aberrations in vivo and in vitro. Animal carcino-

genicity studies have reported conflicting results. Several studies have reported an increased incidence of bronchogenic carcinomas in rats exposed intratracheally to an arsenic-containing pesticide. Reasons for inconsistent carcinogenicity findings in animals may include inappropriate selection of an animal model, and use of flawed study designs. In humans, epidemiologic studies and case reports have reported that arsenic is associated with tumors of the skin, lungs, genital organs, and visual organs (EPA 1984f, EPA 1985c, ATSDR 1987a).

EPA has classified arsenic in Group A, i.e., a human carcinogen, based on extensive evidence of human carcinogenicity through inhalation and ingestion exposure (EPA 1985c).

#### Drinking Water Standards and Criteria

Standards. The current MCL for arsenic under the National Interim Drinking Water Regulations is 50 ug/L. The NAS Drinking Water Committee has analyzed the toxicology of arsenic (NAS 1983a). Based upon this evaluation, NAS recommended the retention of the MCL pending resolution of the question whether arsenic is an essential element in the human diet.

NAS also examined the available epidemiologic studies which were designed to investigate the relationship between arsenic exposure and skin cancer in the United States. The conclusion of the report was that these studies lacked statistical power to determine if arsenic causes skin cancer. However, the report stated that precursors of skin cancer, normally seen in cases of arsenic-induced skin cancer, were not seen in these studies.

Consistent with the NAS recommendations, EPA has proposed that the MCLG remain at the current MCL of 50 ug/L. In its determination, EPA stated that the MCL was below concentrations at which noncarcinogenic toxicity had been demonstrated and was within the concentration range which might be, based on further investigation, essential for humans (EPA 1985c).

<u>Criteria</u>. Based upon recommendations of NAS, EPA has proposed that all health advisories for arsenic be set at 50 ug/L (EPA 1985d). The EPA ambient water quality criterion for the protection of human health

is 22 ug/L, corresponding to  $1 \times 10^{-5}$  lifetime excess cancer risk calculated on the basis of an epidemiological study of skin cancer among Taiwanese exposed via drinking water (EPA 1980a).

#### BENZENE

#### Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of benzene (CAS No. 71-43-2) are summarized below (EPA 1986a).

Molecular Weight (g/mole)	78
Water Solubility (mg/L at 25°C)	1,750
Vapor Pressure (mmHg at 25°C)	95.2
Henry's Law Constant (atm-m³/mole)	$5.6 \times 10^{-3}$
Log Kow	2.12
K _{oc}	83
BCF	5.2

Benzene has a high water solubility and vapor pressure. As a consequence of these two properties, benzene can be characterized as a highly mobile chemical. For benzene released to air, some rainwater washout is anticipated. After deposition in water or soil, volatilization is expected to return some portion back to the atmosphere. Based on its high Henry's Law Constant, volatilization will result in substantial loss to the atmosphere following release to water.

Due to its high water solubility and high vapor pressure, transport to sediments is not expected to be major surface water fate process.

Benzene released to soil can be transported to air via volatilization, to surface water via runoff, and to groundwater via leaching. The first two pathways predominate in surficial soil, whereas the latter pathway predominates at lower soil depths.

According to criteria developed by Kenaga (1980), benzene with a  $K_{\rm oc}$  of 83 would be considered to be mobile in soils. Other factors

which influence soil mobility include soil type, the amount of rainfall, the depth to groundwater, and the extent of degradation (ATSDR 1987b).

Benzene is rapidly degraded in the atmosphere via reaction with the hydroxy radical. In soils and waters, biodegradation is an important process.

#### Noncarcinogenic Effects

The best known and longest recognized toxic effect of benzene in humans is depression of bone marrow function. Benzene-exposed individuals have been found to display anemia, leucopenia, and/or thrombocytopenia (EPA 1985c, ATSDR 1987b). When simultaneous depression of all three cell types (pancytopenia) is accompanied by bone marrow necrosis, the syndrome is called aplastic anemia.

#### Carcinogenicity and Mutagenicity

Excess leukemia mortality, particularly acute myelogenous and monocytic leukemia, has been demonstrated among humans occupationally exposed to benzene. In addition to this definitive human evidence, several long-term bioassays have demonstrated increased incidences of tumors and leukemia following administration in animals. Based primarily upon the direct evidence in man, EPA has classified benzene according to weight-of-evidence carcinogenicity criteria in Group A, human carcinogen-sufficient evidence from epidemiological studies (EPA 1987a).

Benzene has been tested extensively for genotoxic properties.

Benzene was not mutagenic in several bacterial and yeast systems.

Equivocal results have been reported for clastogenic results in vitro; several investigators have reported positive results in mouse micronucleus assays, as well as studies of chromosomal observations in rabbits.

Many investigators have reported significant increases in chromosomal aberrations in symptomatic and asymptomatic workers with either a current or past history of exposure to benzene.

## Drinking Water Standards

EPA has established a final drinking water MCL of 5 ug/L (EPA 1987a).

CADHIUM

# Environmental Chemistry and Fate

The primary sources of atmospheric cadmium are combustion of coal and petroleum products. Cadmium from these sources is primarily adsorbed on small, highly respirable particles, which can be transported over large distances and transferred to other environmental compartments via wet deposition. Cadmium adsorbed to small particulates is more persistant than that adorbed to larger particulates. Photochemical reactions are apparently not involved in the environmental fate of cadmium (ATSDR, 1987h).

Relative to other metals, cadmium is mobile in surface water. In natural waters, cadmium exists as a hydrated ion, metal-inorganic complexes with carbonate hydroxyl, chlorine or sulfate anions; or as metal-organic complexes with humic acids (ATSDR, 1987h).

Because it exists only as the divalent cation, aqueous cadmium is not strongly influenced by the redox potential of water. However, under reducing conditions forming sulfide, cadmium will precipitate in sediments as cadmium sulfide. The concentration of aqueous cadmium is usually inversely related to the pH value and the amount of organic material present (ATSDR 1987h). Humic acid substances account for most of the organic complexes, with solubility dependant on the nature of the humic substance. Sorption by clays and iron oxides is important in reducing aquatic cadmium concentrations.

Cadmium concentrations are typically low in groundwater due to several factors. These factors include sorption by mineral matter and clay, binding to humic substances, precipitation as cadmium sulfide in the presence of sulfide, and precipitation as cadmium carbonate at high pHs.

In soil, cadmium may occur as free cadmium compounds or as the divalent ion dissolved in soil. As a consequence of cation exchange, cadmium may be bound to soil minerals or organic constituents. The aerobic nature of topsoils tends to reduce the amount of cadmium bound to sulfide. High soil acidity favors release of the divalent cadmium cation and its uptake by plants.

Cadmium is not reduced or methylated by microorganisms. However, the biological production of sulfide results in cadmium precipitation. Cadmium is strongly accumulated by all organisms, with concentrations in freshwater and marine organisms hundreds to thousands of times higher than in water being typical. Bioaccumulation of cadmium is strongly correlated with soil cation-exchange capacity (CEC), decreasing with increasing CEC. Bioconcentration in aquatic life is greatest for bottom feeders (e.g. mollusks and crustaceons), followed by fish and aquatic plants (ATSDR, 1987h). Bioaccumulation due to the use of cadmium-containing pesticides on food crops has been noted in beef and poultry.

### Noncarcinogenic Effects

Acute and chronic exposure to cadmium in animals and humans results in renal dysfunction, hypertension, anemia, and altered liver microsomal activity. The kidney is considered to be the critical target organ in humans chronically exposed to cadmium by ingestion. The early clinical signs of renal injury include proteinuria, glucosuria, and amino-aciduria.

To calculate a drinking water equivalent level (DWEL), EPA used renal dysfunction as an endpoint, and the most widely accepted estimate for the critical (threshold) concentration of cadmium in the renal cortex--200 ug/g. Using a 4.5% absorption of the daily dose and 0.01% excretion in the total body burden per day, EPA calculated an LOAEL of 352 ug/day for renal effects in humans. Incorporating an uncertainty factor of 10, EPA has developed an RfD of 35 ug/day. Adjusting the RfD for consumption of 2 liters of water per day, EPA has derived a provisional DWEL of 18 ug/L (EPA 1985c).

Embryotoxic and teratogenic effects have been demonstrated in many mammalian species following parenteral administration of high doses of cadmium. In contrast, there is little evidence of these effects at lower doses by either of the more relevant inhalation or oral exposure routes (EPA 1981, ATSDR 1987h).

#### Carcinogenicity and Mutagenicity

Cadmium chloride aerosol administered by inhalation for 18 months produced lung tumors in rats. In contrast, all cancer bioassays in

which cadmium has been administered orally have been negative. Recent epidemiological studies indicated that workers chronically exposed to cadmium are at risk of elevated lung cancer mortality. According to its weight-of-evidence carcinogenicity criteria, EPA has classified cadmium in Group B1 (probable human carcinogen) for inhalation based on the epidemiological data (EPA 1986a).

While the Agency has concluded that cadmium is a carcinogen by the inhalation route, EPA has classified the chemical in Group D, inadequate evidence for carcinogenicity for the oral route of exposure, because of the negative results reported for cancer bioassays in which cadmium was administered orally (EPA 1986a). Consistent with this categorization, EPA has proposed that the MCL for cadmium be set based upon noncarcinogenic toxicological endpoints.

#### Drinking Water Standards

The current MCL for cadmium, under the National Interim Primary Drinking Water Regulations, is 10 ug/L. This level was designed to prevent renal dysfunction, and was based on a critical value of cadmium in the kidney cortex of 200 ug/g, and assumptions on gastrointestinal absorption, excretion of the absorbed dose, daily excretion of the total body burden, and daily dietary cadmium intakes. The World Health Organization (WHO) guideline for drinking water is 5 ug/L. This value was based on a value for provisional tolerable weekly cadmium intake, assuming that 25% of the total cadmium intake was attributable to drinking water. EPA has proposed an MCLG of 5 ug/L based upon the WHO guidelines and the NAS SNARL (EPA 1985c).

#### CHLOROBENZENE

# Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of chlorobenzene (CAS No. 108-90-7) are summarized below (EPA 1986a).

Molecular Weight (g/mole)	113
Water Solubility (mg/L at 25°C)	466
Vapor Pressure (mmHg at 25°C)	11.7
Henry's Law Constant (atm-m³/mole)	$3.7 \times 10^{-3}$
Log K _{ow}	2.84
K _{oc}	330
BCF	10

Chlorobenzene's moderate water solubility, vapor pressure, and Henry's Law Constant indicate that volatilization from surficial soils and surface water is a major transport pathway.

Once adsorbed on soil, the moderate solubility and  $K_{\rm oc}$  (330) indicate that chlorobenzene will leach and be transported to groundwater. The degree and rate of leaching will depend on a variety of factors including the soil type, organic carbon content, and the presence of organic solvents in the soil. Once chlorobenzene reaches the groundwater, the  $K_{\rm oc}$  indicates that retardation relative to the groundwater flow will occur due to partitioning and adsorption to soil particles.

Current data indicate that degradation of chlorobenzene in aquatic systems is slow (EPA 1985). The estimated BCF of 10 indicates that monochlorobenzene is only slightly bioconcentrated in aquatic life.

## Noncarcinogenic Effects

Chlorobenzene exerts its toxicity primarily on the central nervous system, liver, and kidney. Liver effects include necrosis and interference with porphyrin metabolism. Kidney effects include swelling of the tubular and glomerular epithelia. Hematopoietic effects (e.g., lymphocytosis and leukopenia) have been reported among chlorobenzene-exposed workers; however, it is uncertain whether these effects can be attributed to chlorobenzene or to other contaminants (EPA 1985g).

# Carcinogenicity and Mutagenicity

In a single National Toxicology Program (NTP) bioassay, chlorobenzene was found not to be carcinogenic in mice and rats. The NTP report did note that chlorobenzene induced a statistically significant increased incidence of neoplastic nodules in rates exposed to the highest dose. On this basis, EPA classified chlorobenzene according to weight-of-evidence carcinogenicity criteria in Group C -- limited evidence in animals, no evidence in humans (EPA 1985g).

Most mutagenicity assays of chlorobenzene in bacteria, fungal, and mammalian tissue cultures have been negative (EPA 1985h). One study, however, in <u>Streptomyces antibioticus</u> reported that chlorobenzene induced reversion to vitamin B1 prototrophy, and one study in <u>Saccharomyces cerevisiae</u> showed increased mitotic crossing (EPA 1985k).

# Drinking Water Standards and Criteria

Standards. EPA has not established an MCL or MCLG for chlorobenzene in drinking water.

Criteria. In the absence of suitable data, EPA has not derived a 1-day HA for chlorobenzene. EPA has, however, developed 10-day, longer-term, and lifetime HAs by application of 100-fold uncertainty factors and various intake assumptions and physiological parameters to NOAELs reported in animal studies (EPA 1985g). The 10-day advisory of 1,800 ug/L for a 10-kg child was derived from a NOAEL of 345 mg/m³ reported in an inhalation teratology study in rats and rabbits; the longer-term HAs of 9,000 ug/L (child) and 30,000 ug/L (adult) were derived using a NOAEL of 125 mg/kg/day reported in a subchronic gavage study in mice and rats.

The lifetime HA of 600 ug/L was derived from the NOAEL used in the derivation of the longer-term HA, using an additional uncertainty factor of 10 and assuming that drinking water comprises 20% of the total daily intake.

NAS has estimated, based upon the draft NTP, that a drinking vater concentration of 2.3 ug/L would correspond to an estimated one-in-a-million incremental excess lifetime cancer risk (NAS 1983).

EPA has developed an ambient water quality criterion for the protection of human health of 488 ug/L and for organoleptic (odor and taste) effects of 20 ug/L (EPA 1980a).

CHLOROPHENOLS (2-CHLOROPHENOL AND 2,4-DICHLOROPHENOL)

# Environmental Chemistry and Fate

The relevant physical and chemical properties of chlorophenol (CP-CAS No. 95-57-8) and 2,4-dichlorophenol (DCP-CAS No. 12-83-2) are summarized in the Table below (Arthur D. Little, Inc. 1982).

Compound	2-chlorophenol	2,4-dichlorophenol		
Molecular Weight (g/mole)	129	163		
Water Solubility (mg/L at 25°C)	28,500 (20°C)	4,600 (20°C)		
Vapor Pressure (mmHg at 25°C)	2.2	0.11		
Henry's Law Constant (atm-m³/mole)	$1.3 \times 10^{-3}$	$5.0 \times 10^{-6}$		
Log Kow	2.17	2.75		
Koc	No data	380		
BCF	214	130		

The above data show that both CP and DCP have high water solubilities and low vapor pressures. Additionally, using the  $\rm K_{\rm oc}$  of DCP, the two chlorophenols have moderate  $\rm K_{\rm oc}$ s. These three values indicate that both volatilization from surface soils and infiltration to groundwater are important transport pathways. The high Henry's law constant, along with the high water solubility and moderate  $\rm K_{\rm oc}$ , indicates that volatilization is an important transport pathway from surface water. However, its low Henry's law constant indicates that both volatilization and partitioning to sediments are important pathways in surface water.

Biodegradation in soils and surface water are significant transformation processes (Aurthur D. Little, Inc., 1982). No data were found concerning biodegradation in groundwater.

Bioconcentration factors (BCFs) indicate moderate bioconcentration in aquatic species.

# Noncarcinogenic Effects

In rodents subjected to acute high oral exposures, CP and DCP elicited respiratory excitation, clonic convulsions, and/or motor weakness (hypotonia). Few long-term animal studies are available. Those few that are available show reduction in hematological parameters or enzyme changes. No data were found concerning effects of CP and DCP on the developing embryo or the reproductive process.

# Carcinogenicity and Mutagenicity

No data were found concerning the potential carcinogenicity of CP or DCP by the oral route. However, CP and DCP were reported to promote tumors following a single dermal application of dimethylbenzanthracene on mouse skin (Boutwell and Bosch, 1959).

CP has been shown to be mutagenic in Sprague Davley rats fed 130 mg/kg CP every other day for one week (Chung 1978). In these rats a six-fold increased incidence of chromatid deletions (12% vs. 2% in controls) was seen. Complete inhibition of mitosis was reported in bone marrow cells taken from treated rats.

DCP, tested using the Ames <u>Salmonella</u> microsomal assay, was reported as not mutagenic with and without activation.

Consequently, whereas CP can be classified as mutagenic, there are insufficient data to evaluate the mutagenicity of DCP.

#### Drinking Water Standards

EPA has not issued any drinking water standards, health advisories, or other criteria for CP or DCP.

#### **DICHLOROBENZENES**

# Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of 1,2-dichlorobenzene (CAS No. 95-50-1); 1-3-dichlorobenzene (CAS No. 541-73-1); and 1,4-dichlorobenzene (CAS No. 106-16-7) are presented below.

Compound	1,2-DCB	1,3-DCB	1,4-DCB
Molecular Weight (g/mole)	147	147	147
Water Solubility (mg/L at 25°C)	100	123	79
Vapor Pressure (mmHg at 25°C)	1	2.3	1.2
Henry's Law Constant (atm-m³/mole)	$1.9 \times 10^{-3}$	$3.6 \times 10^{-3}$	$2.9 \times 10^{-3}$
Log K	3.6	3.6	3.6
K _{oc}	1700	1700	1700
BCF	5	5	5

The log  $K_{ov}$ , high  $K_{oc}$ , and low vapor pressure indicate that adsorption onto soils is the major fate process of DCB isomers in soils. Similarly, adsorption to these media will dominate transport and fate of the isomers discharged into aquatic media.

The log K_{ow}s suggest that DCB isomers will bioaccumulate. Biodegradation is not likely to be a significant degradation pathway for DCB isomers, based upon data which indicate that chlorobenzene is resistent to biodegradation and that resistance increases with increasing chlorination of the benzene ring (ATSDR 1987i).

#### Noncarcinogenic Effects

The principal toxic effects of o-dichlorobenzene (1,2-dichlorobenzene or o-DCB) and p-dichlorobenzene (1,4-dichlorobenzene or p-DCB) in humans and other animals from acute and longer-term exposures include

CNS depression; blood dyscrasias; and lung, kidney, and liver damage. Similar data are not available for m-dichlorobenzene (1,3-dichlorobenzene or m-DCB). However, based upon short-term assays, EPA has determined that short-term assessments developed for o-DCB should apply to m-DCB.

# Carcinogenicity and Mutagenicity

The few studies available on the carcinogenic potential of the DCBs have been negative or insufficient to clearly classify any DCB isomer as carcinogenic. Preliminary results of an NTP gavage bioassay indicate that o-DCB was not carcinogenic under the conditions of the experiment. Pending receipt of the final NTP report for o-DCB, EPA has categorized o-DCB according to Agency weight-of-evidence carcinogenicity criteria in Group D, not classifiable as to human carcinogenicity (EPA 1987d). EPA has classified p-DCB in group C, limited evidence of carcinogenicity in animal studies (EPA 1987a).

In general, DCBs have shown little or no mutagenic activity in a range of bacterial systems. However, several studies with mold and plant cultures treated with DCBs have reported mutations and chromosomal alterations (EPA 1987d).

# Drinking Water Standards and Criteria

EPA has established a final drinking water MCL for p-dichlorobenzene of 75 ug/l (EPA 1987a). This MCL was based on a reference dose of 0.1 mg/kg/day, an uncertainty factor of 10, allocation of 20% of total human intake from all exposure sources to drinking water and various intake and physiological assumptions. EPA is also in the process of establishing an enforceable MCL for o-DCB and p-DCB, but not m-DCB. As a first step in the process, EPA has issued a proposed MCLG for o-DCB based upon a NOAEL reported in a subchronic gavage study in mice and rats. Based upon a NOAEL of 125 mg/kg/day, an uncertainty factor of 100, and the same assumptions as for p-DCB, EPA has derived a proposed MCLG for o-DCB of 620 ug/L.

In the absence of sufficient data, EPA has not developed, and is not in the process of developing, a drinking water standard for m-DCB.

1,2-DICHLOROETHANE (ETHYLENE DICHLORIDE OR EDC)

# Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of 1,2-dichloroethane (CAS No. 107-06-2) are summarized below (EPA 1986a).

Molecular Weight (g/mole)		99
Water Solubility (mg/L at 25°C)	8.5	x 10 ⁻³
Vapor Pressure (mmHg at 25°C)		64
Henry's Law Constant (atm-m³/mole)	9.8	x 10 ⁻⁴
Log Kow		1.48
K _{oc}		14
BCF		1.2

A half-life of 1,2-dichloroethane from soil could not be located in the available literature; however, based on its moderate vapor pressure, evaporation is expected to be the predominant loss mechanism from the top layer of soil. In subsurface soil, biochemical and chemical biodegradation are expected to be slow. Therefore, based on its low  $K_{\rm oc}$ , 1,2-dichloroethane is expected to leach and be transported to groundwater. Once in groundwater, the low  $K_{\rm oc}$  indicates 1,2-dichloroethane will be mildly adorbed to soil particulate and will be subject to low retardation relative to the groundwater flow. In addition, its high Henry's Law Constant indicates evaporation from surface water is an important fate mechanism. Based on its low BCF, 1,2-dichloroethane is not expected to bioconcentrate in aquatic life.

#### Noncarcinogenic Effects

At relatively high doses, 1,2-dichloroethane (EDC) produces CNS depression as well as injury to the liver, kidney, and adrenals. Symptoms of CNS depression typically include headache, dizziness,

nausea, and general weakness. Effects on the liver include necrosis and epithelial cell damage, and on the kidney, degeneration of the proximal tubule (EPA 1985b)

### Carcinogenicity and Mutagenicity

In a NCI bioassay, EDC administered by gavage was shown to increase the incidence of tumors in both mice and rats. Based upon these data, EPA has classified EDC according to weight-of-evidence carcinogenicity criteria in Group B₂ - probable human carcinogen (EPA 1987a).

EDC has shown to induce gene mutations in bacteria, plants,

<u>Drosophilia melanogaster</u>, and cultured Chinese hamster ovary cells (EPA 1985i). In addition, EDC has been reported to cause meiotic chromosomal disjunction in <u>Drosophilia</u>. Based upon these data, EPA has determined based upon weight-of-evidence criteria that EDC is a mutagen that may have the potential for causing adverse effects in humans (EPA 1985i).

## Drinking Water Standards and Criteria

Standards. In the first stage of a procedure to establish an enforceable MCL for EDC in drinking water, EPA has established a MCLG of O. This MCLG was predicated on the EPA conclusion that no exposure to a "probable human carcinogen" is acceptable. Based upon considerations of analytical feasibility and feasibility of control, EPA has issued a MCL for EDC of 5 ug/L.

Criteria. In the absence of suitable data, EPA has not developed 1-day or 10-day HAs for EDC. EPA has, however, developed a longer-term HA based upon a NOAEL reported in a rat inhalation study. Based upon a NOAEL of 405 mg/m³, an uncertainty factor of 100 and various intake assumptions and physiological parameters, EPA derived longer-terms HAs of 740 ug/L (10-kg child) and 2,600 ug/L (70-kg adult) (EPA 1985d). Because EDC was judged to be a probable human carcinogen, EPA did not develop a lifetime HA for noncarcinogenic effects.

EPA has not developed an ambient water quality criterion for EDC for the protection of human health.

#### HEXACHLOROBENZENE (HCB)

## Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of hexachlorobenzene (CAS No. 118-74-1) are summarized below (EPA 1986a).

Molecular Weight (g/mole)	285		
Water Solubility (mg/L at 25°C)	0.006		
Vapor Pressure (mmHg at 25°C)	$1.1 \times 10^{-5}$		
Henry's Law Constant (atm-m³/mole)	$6.8 \times 10^{-4}$		
Log Kov	5.23		
K _{oc}	3900		
BCF	8690		

Hexachlorobenzene (HCB) has a low vater solubility, a high  $\log K_{\rm ow}$ , and relatively high  $K_{\rm oc}$ , indicating that the chemical will be strongly adsorbed in soil or sediments following discharge to surface vater. The low vapor pressure and Henry's law constant indicate that votilization will not be a major transport mechanism from either soils or surface vater. In addition, based on the log  $K_{\rm ow}$  and high  $K_{\rm oc}$ , significant leaching from source soils is not anticipated.

HCB is expected to be slowly degraded by soil or sediment microorganisms. HCB is expected to significantly bioconcentrate in aquatic life with BCFs ranging from 5,500 to 44,437 in vertebrates (EPA 1985g).

# Noncarcinogenic Effects

Porphyria cutonea tardea (PCT) has been demonstrated in Turkish citizens who accidentally consumed bread contaminated with HCB. PCT-associated symptoms observed included skin lesions and hyperpigmentation. In addition, HCB caused neurotoxicity, liver damage, arthritic conditions, and in children, reduced growth. Studies in rodents re-

ceiving HCB orally reported both fetotoxicity and teratogenicity (EPA 1985g). The effects noted in these studies included cleft palate, reduced fetal viability, reduced neonatal weight gain and reduced relative fetal weight (EPA 1987g).

# Carcinogenicity and Mutagenicity

Lifetime animal carcinogenicity studies have revealed that HCB elicited statistically significant increased tumor incidences in rats, mice, and hamsters. Based on these data, EPA has placed HCB in its carcinogenicity category  $\mathbf{B}_2$  as a probable human carcinogen.

# Drinking Water Standards and Criteria

EPA has not developed a drinking water standard for HCB. The EPA one-day and 10-day and longer health advisories (HAs) for a 10-kg child are each 50 ug/L. The longer-term HA is 175 ug/L for a 70-kg adult. The EPA reference concentration for a potential carcinogen risk of  $1 \times 10^{-6}$  is 0.02 ug/L.

LEAD

## Noncarcinogenic Effects

When toxicity information is considered for noncarcinogenic effects of substances, the data are evaluated based on their dose-related response characteristics and the establishment of an exposure level below which no adverse effects are observed. Historically, the observed threshold or no-effect level for lead-induced toxic effects has continued to decline as more sophisicated experimental and clinical measures are employed to detect more subtle effects. These include alterations in physiological functions at blood lead (PbB) levels below the currently accepted maximum safe level for exposure to children, a segment of the population currently regarded to be at highest risk of lead-induced effects (EPA 1985c, ATSDR, 1987j).

The most serious effects associated with markedly elevated PbB levels are severe neurotoxic effects that include irreversible brain damage. For most adults, such damage does not occur until PbB levels exceed 100 to 120 micrograms per deciliter (ug/dl). At these PbB levels, severe gastrointestinal symptoms and effects on several other organ systems are often found. Precise thresholds for occurrence of overt neurological and gastrointestinal signs and symptoms of lead exposure in cases of subencenpthalopathic lead intoxication have yet to be established, but such effects have been observed in chronically exposed adult lead workers at PbB levels as low as 40 to 50 ug/dl.

Toward the lower range of PbB levels associated with overt lead intoxication, less severe but important signs of impairment in normal physiological functioning in several organ systems are evident among apparently asymptomatic lead-exposed adults (EPA 1985c). These include:

- o Slowed nerve conduction velocities indicative of peripheral nerve dysfunction (at PbB levels as low as 30 to 40 ug/dl);
- o Altered testicular function (at PbB levels of 40 to 50 ug/dl); and
- o Reduced hemoglobin production (at approximately 50 ug/dl).

EPA has concluded that all of the above effects point toward a generalized impairment of normal physiological functioning of several different organ systems as adult PbB levels exceed 30 to 40 ug/dl. Evidence of impaired heme synthesis effects in blood occur at even lower levels.

More recent research has indicated that there is a relationship between PbB levels and increases in blood pressure. Preliminary review of this work indicates a statistically significant correlation between PbB levels and diastolic blood pressure in white males, ages 40 to 50, with no threshold apparent in the range of 6 to 30 ug/dl. Of particular concern is the finding of a 2 mm Hg increase in diastolic pressure per incremental PbB level increase of 0.5 ug/dl. Possible increases in risk of more severe medical events (stroke, heart attack, death) associated with lead-induced increases in blood pressure are also estimated in one of the recently published studies.

Children represent a sensitive subpopulation with regard to lead toxicity. As with adults, lead affects many different ogan systems and biochemical/physiological processes across a wide range of exposure levels. Effective PbB levels for producing encephalopathy or death in children are lower than in adults, starting at approximately 80 to 100 ug/dl. Permanent metal retardation and other marked neurological deficits are among lasting neurological sequelae typically seen in cases of nonfatal childhood lead encephalopathy. Other overt neurological signs and symptoms of subencepthalopathic lead intoxication, such as peripheral neuropathies (functional and/or pathological changes in the peripheral nervous system), have been detected in some children at PbB levels as low as 40 to 60 ug/dl. Chronic kidney disease is not evident at PbB levels above 100 ug/dl. Horeover, colic and other overt gastrointestinal symptoms occur in children, at least down to 60 ug/dl. Rank anemia is also evident at 70 ug/dl, representing an extreme manifestation of reduced hemoglobin synthesis at PbB levels as low as 40 ug/dl. All these effects are widely accepted as adverse health effects, and are reflective of widespread marked impact of lead on the normal physiological functioning of many different organ systems (EPA 1984d, 1985c, ATSDR 1987j).

Additional studies demonstrate further important health effects occurring in non-overtly lead-intoxicated children at similar or lower PbB levels than those indicated above. Among the most important and controversial of these electrophysiological and neuropsychlological effects are indications of peripheral nerve dysfunction, indexed by slowed nerve conduction velocities (NCV) found in children with PbB levels lower than 30 ug/dl. EPA has concluded that while none of these studies on CNS effects can individually be regarded as conclusively proving significant cognitive (IQ) or behavioral effects occurring below 30 ug/dl, they clearly indicate likely assoications between neuropsychologic deficits and PbB levels as low as 30 to 50 ug/dl. The magnitude of average observed IQ deficits is approximately 5 points at mean PbB levels of 50 to 70 ug/dl and about 4 points at mean levels of 30 to 50 ug/dl. Whether a smaller risk exists at somewhat lower levels (15 to 30 ug/dl) cannot be determined at this time (EPA 1984d, 1985c).

Many different impacts (representing potentially impaired functioning and depleted reserve capacities of many different tissues and organs) have been noted at PbB levels below 30 ug/dl.

At PbB levels around 10 to 15 ug/dl, initial signs of detectable heme synthesis impairment occur in many different organic systems, indications of increasing degrees of pyrimidine metabolism interference, signs of altered nervous system activity, and interference in vitamin-D metabolism. EPA has stated that, on the basis of these data, these effects might be viewed as becoming sufficiently adverse to warrant avoidance as PbB levels exceed 20 to 25 ug/dl (EPA 1985c).

#### Reproduction and Development

There is a paucity of data on which to evaluate the effects of lead on reproduction and development in humans. Early studies of pregnant women exposed to high levels of lead indicated toxic, but not teratogenic, effects on the conceptus. One recently reported study hints at birth anomalies possibly associated with exposure to low lead levels (mean cord blood level of 15 ug/dl) among women in the general population. However, the significance of these studies has been questioned because of the absence of reported statistically significant associations between cord blood levels and specific types of minor anomalies or

any major anomalies. There are also no reliable data pointing to adverse effects in human offspring following lead exposure to fathers.

EPA has concluded that the current collective human data regarding lead's effects on reproduction on in utero development are insufficient for accurate estimation of exposure-effect or no-effect levels (EPA 1984d). In the absence of sufficient data, it has been suggested that it would be prudent to avoid lead exposures resulting in PbB levels exceeding 25 to 30 ug/dl to pregnant women and women of child-bearing age in general. This conclusion was based on the known equilibration between maternal and fetal blood lead concentrations and growing evidence of deleterious effects in young children as PbB levels approach 25 to 30 ug/dl. Industrial lead exposure of men with PbB levels of 40 to 50 ug/dl also appears to result in altered testicular function.

# Carcinogenicity

Several studies have reported renal tumors in Wistar rats following ingestion of high doses of a lead salt (lead acetate). Lead subacetate (another lead salt) has produced benign tumors (renal carcinomas or adenomas) in Swiss mice and seveal strains of rats, but not golden hamsters. Glimomas (CNS tumors) were also observed in many of these studies.

There have been a number of epidemiological studies which have assessed the mortality experience of lead-exposed workers. In some of the studies, no excess cancer mortality was observed. In one study, non-statistically significant excess cancer mortality of the respiratory system and cancer of the digestive organs and peritoneum was reported which on evaluation by other statistical techniques by another investigator was reported to achieve statistical significance. Another study has reported increased mortality from renal cancer among a group of lead smelting workers. However, this excess mortality, based on only six cases, did not achieve statistical significance. On review of all of these studies, EPA concluded that the absence of good lead exposure documentation made it difficult to assess the contribution of lead to the observed results.

The International Agency for Research on Cancer (IARC) has classified lead in Group 3, inadequate evidence for carcinogenicity in humans,

sufficient evidence for carcinogenicity in animals (for some salts). EPA has classified lead in category B₂ (sufficient evidence in animals, insufficient evidence in humans) according to the Agency's Guidelines for Carcinogen Risk Assessment (EPA, 1986b). However, the Agency noted that the doses inducing kidney tumors in positive rat studies were beyond the human lethal dose, and several epidemiological studies have not demonstrated an association between lead exposure and elevated cancer occupationally exposed workers. Consequently, EPA has recently proposed to set an MCLG in drinking water based on noncarcinogenic endpoints (EPA 1985c).

# Drinking Water Standards

The current EPA and drinking water MCL for lead is 50 ug/L. This limit was designed to limit PbB levels in 99.5% of the population to below 30 ug/dl.

NAS (1977) has stated that the current MCL, in view of other environmental sources of exposure, may not provide a sufficient margin of safety, particularly for fetuses and young children.

EPA, in agreement with this assessment, has recently taken the first step in lowering the MCL by issuing a proposed MCLG of 20 ug/L. This level was derived based on a target PbB level of 15 ug/dl for protecting children and infants, using a conversion factor of 6.25 to translate PbB to lead in drinking water (assuming a consumption of 1 liter of water per day) and an uncertainty factor of 5 (EPA 1985c). After finalization of the MCLG, EPA would then factor in other data, such as technological feasibility, to establish a revised MCL.

#### 4-METHYL-2-PENTANONE

## Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of 4-methyl-2-pentanone are summarized below (Verscheuren 1983).

Molecular Weight (g/mole)	100
Water Solubility (mg/L at 25°C)	19,000
Vapor Pressure (mmHg at 25°C)	6 (20°C)
Henry's Law Constant (atm-m ³ /mole)	no data found
Log K _{ow}	no data found
K _{oc}	no data · found
BCF	no data found

4-methyl-2-pentanone (MIBK) has a high water solubility and moderate vapor pressure. As a consequence of these two properties, benzene can be characterized as a moderately mobile chemical. For MIBK released to air, some rainwater washout is anticipated. After deposition in water or soil, volatilization is expected to return some portion back to the atmosphere.

Due to its high water solubility and moderate vapor pressure, some transport to sediments is expected.

MIBK released to soil can be transported to air via volatilization, to surface water via runoff, and to groundwater via leaching. The first two pathways predominate in surficial soil whereas the latter pathway predominates at lower soil depths.

#### Noncarcinogenic Effects

In high concentrations, MIBK produces narcosis with symptoms of headache, nausea, lightheadedness, and vomiting.

Carcinogenicity and Mutagenicity

MIBK has not been tested in a long-term animal carcinogenesis bio-assay. Consequently MIBK would be categorized according to EPA carcinogenic risk criteria in group D - insufficient data, MIBK has not been shown to be mutagenic.

# Standards and Criteria

There are no EPA drinking water standards, health advisories or ambient water quality criteria for the protection of human health for MIBK.

#### NAPHTHALENE

#### Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of naphthalene (CAS No. 91-20-3) are summarized below (EPA 1984).

Molecular Weight (g/mole)	128
Water Solubility (mg/L at 25°C)	31.7
Vapor Pressure (mmHg at 25°C)	0.082
Henry's Law Constant (atm-m³/mole)	no d <b>ata</b> found
Log Kow	3.37
Koc	no data
	found

Naphthalene has a moderate water solubility and moderate vapor pressure. As a consequence of these two properties, benzene can be characterized as a moderately mobile chemical. For naphthalene release to air, some rainwater washout is anticipated. After deposition in water or soil, volatilization is expected to return some portion back to the atmosphere.

Due to its moderate water solubility and moderate vapor pressure, transport to sediments is expected to be a major surface water fate process.

Naphthalene released to soil can be transported to air via volatilization, to surface water via runoff, and to groundwater via leaching. The first two pathways predominate in surficial soil, whereas the latter pathway predominates at lower soil depths.

# Noncarcinogenic Effects

Exposure to naphthalene by the ingestion, inhalation and dermal routes has been reported to result in intravascular hemolysis, corneal

ulceration and cataracts, eye irritation, headache, confusion, malaise, nausea, vomiting, and bladder irritation in humans. In severe cases hemolytic anemia with associated jaundice and occasionally renal disease and death have been reported. Individuals with a deficiency of glucose-6-phosphate dehydrogenase (G6PD) and infants appear to be at greater risk for developing hemolytic anemia.

In a study recently reported by Shopp et al. (1984) male and female CD-1 mice were exposed for 14 or 90 day by gavage to 3 different doses of the compound. Both males and females showed a 5-10% mortality and depressed body weights at the high dose of 133 mg/kg/day. At this dose the males had decreased thymus weights and the females had decreased spleen and increased lung weights. No toxic effects were observed at the two lower doses of 53 mg/kg/day and 27 mg/kg/day. For all exposure groups, no alterations were observed in the hepatic drug metabolizing system except for a dose-related inhibition of aryl hydrocarbon hydro-xylase (AHH) activity.

Harris and coworkers (1970 as reported in USEPA 1982) reported a statistically significant increase in retarded cranial ossification and heart development in offspring of Sprague Dawley dams that had received intraperitoneal injections of 395 mg/kg naphthalene on days 1-15 of gestation. In a recent study by Plasterer and coworkers (1985) single doses of naphthalene were administered by gavage to pregnant CD-1 mice on days 7 through 14 of pregnancy. The compound was given at a dose estimated to be at or just below the threshold of adult lethality. A significant reduction in the average number of live pups per litter was reported for the naphthalene-dosed females.

# Carcinogenicity and Mutagenicity

Overall, the results of carcinogenicity testing with napthalene have been negative. Knake (1956 as reported in USEPA 1980) treated 40 white rats with 500 mg/kg of coal tar naphthalene in sesame oil subcutaneously every two weeks for a total of seven treatments. Five out of thirty-four rats developed invasive or metastatic lymphosarcoma prior to death. These result are equivocal, however, because the injection sites were first painted with carbolfuchsin (a known carcinogen) prior

to each injection. The naphthalene also contained approximately 10% methylnaphthalene.

In a second study, Knake (1956 as reported in USEPA 1980) painted a group of mice with either benzene or a solution of coal tar naphthalene in benzene and noted an excess of lymphatic leukemia in the group treated with the napthalene/benzene solution as compared to those treated with benzene alone (4 vs. 0 cases, respectively). These results are difficult to interpret because benzene is a known animal carcinogen.

Naphthalene when combined with rat microsomal fractions has been found to be nonmutagenic in bacterial mutagenesis assays (EPA 1980).

## Drinking Water Standards and Criteria

EPA has not developed any drinking water standards or health advisories or ambient water quality criteria for human health for napthalene.

NICKEL.

# Environmental Chemistry and Fate

In the atmosphere, nickel exists predominantly as an aerosol. Atmospheric residence times depend on the nickel concentrations, the density and size of particles, and precipitation. The typical residence times of nickel in the atmosphere ranges from 1 to 21 days. Nickel species in the air most likely include soil minerals, oxide, and sulfates.

Depending on the chemical and physical properties of the water, nicekl exists in numerous soluble and insoluble forms in aqueous systems. Due to precipitation, iron oxide and manganese oxide are the primary determinants of the aqueous mobility of nickel. However, variation of other factors such as sulfate concentration and pH can significantly influence nickel's mobility.

Nickel is persistent in soils and has the potential to leach to groundwater. Sorption of nickel to soil is dependent on soil-water pH, total iron and surface area. Organic complexing agents in soil tend to restrict nickel movement due to formation of organo-nickel complexes. Nickel may also be immobilized as nickel ferrite, as other more common compounds (e.g., carbonates, sulfates, or halides) are too soluble to precipitate out of soil-water.

Nickel is moderately mobile in low pH and high cation-exchange capacity soils, but less mobile in mineral soils and soils with high organic content (ATSDR 1987j). Extractability of nickel from soil effects uptake by plant roots. The extractability is influenced by a number of complex physical, chemical, and biological factors.

Nickel is bioconcentrated in some aquatic organisms. Bioconcentration factors typically range from 20-1,000, with higher values for phytoplankton, algae, and seaweed.

#### Noncarcinogenic Effects

Laboratory studies in animals have demonstrated depressed body weight gain, alterations in hematology parameters, cytochrome oxidase activity, and iron contents of organs following high oral nickel exposure.

Studies evaluating the effects of nickel administration on animal reproductive systems have produced varying results. Nickel is known to cross the placental barrier in animals, and some data suggest this is also true for humans. Intraperitoneal and intravenous injections of nickel compounds have produced some tetratogenic effects in animals. Increased fetal mortality and reduced fetal weights also were observed. In some studies, high dosages resulted in reduced fetal survival and decreased fetal weights in the absence of frank teratogenesis.

Feeding studies involving administration of various nickel compounds to rats are more applicable to human exposure situations. Various studies have reported a correlation between nickel concentration in food or water and reproductive performance (ATSDR, 1987b). Nickel exposure has also been reported to impair male gametogenesis in mice and rats. No adverse reproductive effects linked to nickel exposure have been reported in humans.

# Carcinogenicity and Mutagenicity

The chemical form and route of exposure may be important factors in determining the carcinogenic potential of nickel. Insoluble nickel compounds (e.g., metallic nickel, nickel subsulfide, and nickel carbonyl) have been shown to produce tumors following inhalation exposure. However, multiple studies in which nickel was administered orally to rats and mice have been uniformly negative (EPA 1985c). In humans, excess respiratory cancer mortality has been demonstrated in epidemiological studies of nickel smelting and refining workers.

EPA has classified nickel in group B₂--sufficient evidence for carcinogenicity in animals, limited evidence in humans--according to guidelines for carcinogenic risk assessment (EPA, 1986b) for the in-halation route, based upon the positive animal evidence for nickel subsulfide and carbonyl compounds. However, reflecting the negative animal carcinogenicity data, the Agency has categorized nickel in Group D - inadequate evidence for the oral route of exposure.

Nickel chloride was not mutagenic, whereas nickel sulfate was found to be mutagenic in in vitro assays.

# Drinking Vater Standards

There is no federal drinking water standard for nickel. EPA, however, has established a lifetime drinking water health advisory of 150 ug/L (EPA 1985c).

## PENTACHLOROPHENOL (PCP)

#### Introduction

Commercial pentachlorophenol (PCP) is contaminanted with two chemicals - hexachlorobenzene (HCB), and hexachlorodibenzo-p-dioxin (HxCDD) which are currently categorized by EPA in its category B₂ as probable human carcinogens. Both are also potential reproductive toxins. PCP is also contaminated with polychlorinated dibenzofurans. This profile primarily addresses the toxicity of commercial PCP. The reader is referred to the profiles for HCB, HxCDD, and dibenzofurans for further information relevant to evaluating the potential toxicity of commercial PCP.

# Environmental Chemistry and Fate

The relevant physical and chemical properties for pentachlorophenol (CAS No. 87-86-5) are summarized below (EPA 1986a).

Molecular Weight (g/mole)	266		
Water Solubility (mg/L at 25°C)	14		
Vapor Pressure (mmHg at 25°C)	$1.1 \times 10^{-4}$		
Henry's Law Constant (atm-m³/mole)	$2.8 \times 10^{-6}$		
Log K	5		
K _{oc}	53,000		
BCF	770		

Pentachlorophenol (PCP) has a moderate water solubility, low vapor pressure, low Henry's Law Constant, and high  $K_{\rm oc}$ . Based upon its  $K_{\rm oc}$  and low vapor pressure, PCB would be strongly bound to surface soil. The  $K_{\rm oc}$  of 53,000 indicates that leaching from soils and transport to groundwater is a slow process. PCP is resistant to biodegradation. The low Henry's Law Constant and high  $K_{\rm oc}$  indicate that PCP will be strongly partitioned to surface water sediments. Finally, the BCF indicates

that, like many lipophilic organics, PCP will bioconcentrate in aquatic life.

# Noncarcinogenic Effects

PCP has elicited a wide variety of symptoms following subchronic oral administration in animals, including: secondary anemia, increased blood sugar levels, hemorrhages and congestion in the lungs and kidneys, degenerative changes in the kidney tubules, and lesions of the brain and spinal cord (EPA 1985n). Commercial PCP containing chlorinated dibenzo-p-dioxins and dibenzofurans are significantly more toxic than the purified pentachlorophenol used in subchronic animal studies.

In humans, local irritation, allergic responses, and systemic effects are found. Pentachlorophenol poisoning is characterized by profuse sweating, accompanied by fever, weight loss, and gastrointestinal distress. Occupational epidemiological studies have revealed an increased incidence of low-grade infections or inflammations, and depression of kidney functions, which are partially reversible (EPA 1985h).

#### Reproduction and Development

Pentachlorophenol has not been shown to be teratogenic in any of the many animal studies designed to assess the toxicological endpoint.

Fetoxicity has been elicited by both purified and commercial PCP, with the effects probably secondary to maternal toxicity. Fetotoxic effects noted in rat studies include increases in resorptions, alterations in the sex ratio, and a number of skeletal anomalies regarded by the investigators as indicative of fetotoxicity rather than teratogenicity. EPA has developed a NOEL of 3 mg/kg/day (EPA 1987g) based on a one-generation rat study.

HxCDD, an important contaminant in commercial PCP, has elicited both fetotoxicity and teratogenicity in rat studies. Teratogenic effects observed include cleft palate, dilated renal pelvis, and abnormal vertebrae. EPA has derived a NOEL of 0.1 ug/kg/day for fetotoxicity (EPA 1987g), which is lower than the NOEL for teratogenicity.

HCB, another important contaminant of commercial PCP, has elicited fetotoxicity and teratogenicity in rodent studies. Abnormalities ob-

served in fetuses include cleft palate, reduced fetal viability, reduced neonatal weight gain, and reduced relative neonatal weight. Based on these studies, EPA set the NOEL for HCB at 1.0 mg/kg/day (EPA 1987g).

# Carcinogenicity and Mutagenicity

Pure pentachlorophenol has not been reported to be carcinogenic in a number of animal studies (EPA 1987g). It has also produced negative results in an initiation/promotion study. These results are consistent with mutagenicity studies which have primarily been negative (EPA 1987g).

However, HxCDD and HCB have both been found to be oncogenic in animal studies (EPA 1987g). The EPA estimated 95% upper bound carcinogenic potencies of  $6.2 \times 10^3$  and 1.67 mg/kg/day, for HxCDD and HCB, respectively (EPA 1986a, EPA 1987g).

## Drinking Water Standards and Criteria

EPA has issued no drinking water standards for PCP, HCB, or HxCDD. EPA has issued a proposed MCLG for PCP of 200 ug/L, based upon a DWEL of 1.01 mg/L, and assuming a drinking water contribution of 20% to total daily PCP intake (EPA 1985a).

EPA has developed health advisories for a 10 kg child and a 70 kg adult for PCP and HCB, but not for HxCDD. The EPA health advisory limits and reference concentrations for potential carcinogens for PCP and its major contaminants are summarized in the following table.

	One-day	Ten-day	Long	term	Lifetime	Reference	
	10 kg	10 kg	10 kg	70 kg	70 kg	Concentration*	
Pentachlorophenol	1000	300	300	1050	1050		
Hexachlorobenzene	50	50	50	175		0.02	
HxCDD							
Dibenzofurans							

Source: EPA, 1986a

- No limit developed.
- * Corresponding to a 1 x 10⁻⁶ cancer risk.
  All concentrations in ug/L.

PHENOL

# Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of phenol (CAS No. 108-95-2) are summarized below (EPA 1986a).

Molecular Weight (g/mole)	94
Water Solubility (mg/L at 25°C)	93,000
Vapor Pressure (mmHg at 25°C)	0.341
Henry's Law Constant (atm-m³/mole)	$4.5 \times 10^{-7}$
Log K _{ow}	1.42
Koc	14.2
BCF	14

Phenol has a high water solubility and vapor pressure. As a consequence of these two properties, phenol can be characterized as a highly mobile chemical. For phenol released to air, some rainvater washout is anticipated. After deposition in water or soil, volatilization is expected to return some portion back to the atmosphere. Based on its low Henry's Law Constant, substantial volatilization loss should not occur to the atmosphere following release to water.

Due to its high water solubility and high vapor pressure, transport to sediments is not expected to be a major surface water fate process.

Phenol released to soil can be transported to air via volatilization, to surface water via runoff, and to groundwater via leaching. The first two pathways predominate in surficial soil, whereas the latter pathway predominates at lower soil depths.

According to criteria developed by Kenaga (1980), phenol with a  $K_{\rm oc}$  of 14.2 would be considered to be mobile in soils. Other factors which influence soil mobility include soil type, the amount of rainfall, the depth to groundwater, and the extent of degradation.

# Noncarcinogenic Effects

Phenol is a highly toxic compound that may enter the body via skin absorption, vapor inhalation, and ingestion. Based on the available human and animal data, exposure to large doses by any route of exposure can lead to serious illness or death. Toxic doses in human and species exhibit similar symptoms: initial increases in heart rate, labored breathing, cyanosis, and pulmonary edema. The present data do not indicate that phenol to be teratogenic.

# Carcinogenicity and Mutagenicity

Based upon the limited animal data, the EPA has classified phenol in category D - inadequate evidence to evaluate carcinogenicity.

The mutagenicity data are equivocal presenting on balance, equivocal evidence of mutagenicity.

# Drinking Water Standards and Criteria

EPA has not classified drinking water standards or criteria for phenol.

POLYCHLORINATED BIPHENYLS (PCB)

#### Introduction

Polychlorinated biphenyls (PCBs) are a class of compounds with varying degrees of chlorine substitution on two phenyl rings bound at the 1-1' position. PCBs, previously used in commerce, are mixtures of various substituted biphenyls formed by a reaction of chlorine with biphenyl. Because of their heat stability and resistance, low water solubility, and favorable dielectric properties, PCBs found considerable use in hydraulic fluids, compressor lubricants, heat transfer fluids, paints, lacquers, and ink (EPA 1987f).

PCBs have the empirical formula  $C_{12}H_{10-n}Cl_n$  with n=1 to 10. The numbering system is based upon ring-ring chlorine bonds, with identical numbering systems on each ring. By convention, the ring with the fewest chlorine substitutes, or substituted in the highest numerical positions, is designated as prime (ATSDR, 19871).

Individual PCB registered trademarks or brand names vary according to both the manufacturer and the country of origin.

PCBs, formerly produced in the United States by a single manufacturer, are called Aroclors. All Aroclors are designated by a four-digit numbering system. The first two digits denote the type of compound; the last two digits give the percentage by weight of chlorine. The only exception is Aroclor 1016. The trademarks by manufacturers in other countries include Phenoclor, Clophen, and Kaneclor.

#### Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fates of polychlorinated biphenyls are summarized in Table 1 (ATSDR 19871).

In water, adsorption to sediments or other organic water is a major fate process for PCBs (EPA 19871). Based on their water solubilities and octanol-water partition coefficients, the lower chlorinated components of the Aroclors will sorb less strongly than the higher chlorinated isomers.

Volatilization is also an important environmental fate process for PCBs dissolved in natural water. The estimated Henry's Law Constants

Table 1

PHYSICAL AND CHEMICAL PROPERTIES OF PCBs*

								Henry's Law**	
Aroclor Designation	Molecular Weight (average)	Color	-	Solubility water, mg/L		Partition Coefficient Log Octanol-Water*		Constant atm-m ³ /mol at 25°C	Biocentration Factor***
1016	257.9	Clear	011	0.42	1.33	5.6	4 x 10 ⁻⁴	2.9 x 10 ⁻⁴	42,500
1221	200.7	Clear	Oil	0.59 (24°C)	1.15	4.7	$6.7 \times 10^{-3}$	3.5 x 10 ⁻³	
1232	232.2	Clear	Oil	Unknown	1.24	5.1	4.06 x 10 ⁻³	Unknown	
1242	266.5	Clear	Oil	0.24	1.35	5.6	$4.06 \times 10^{-4}$	5.2 x 10 ⁻⁴	
1248	299.5	Clear	Oil	0.054	1.41	6.2	$4.94 \times 10^{-4}$	2.8 x 10 ⁻³	70,500
1254	328.4	Lt. Yellow	Viscous liquid	0.012	1.50	6.5	7.71 x 10 ⁻⁵	2.8 x 10 ⁻³	100,000
1260	375.7	Lt. Yellow	Sticky resin	0.0027	1.58	6.8	4.05 x 10 ⁻⁵	4.6 x 10 ⁻³	190,000

^{*} These log Kow values represent an average value for the major components of the individual Aroclor.

Source: Unless otherwise specified, from ATSDR (19871).

^{**} Henry's Law constants were estimated by dividing the vapor pressure by the water solubilities, and represent average values for the Aroclor mixtures as a whole (ATSDR 1987r).

^{***} From Lyman, Reehl, and Rosenbladt (1982).

are indicative of significant volatilization from environmental waters (ATSDR 19871). However, strong adsorption to sediments significantly reduces the concentrations of PCBs available for volatilization, with longer volatilization half-lives for the higher chlorinated PCBs.

The low water solubility, high log K_{ow}s, and demonstrated strong adsorption to soils and sediments indicate that significant leaching should not occur in soil under most conditions. Lower chlorinated PCBs will leach at rates greater than the higher chlorinated PCBs. In the presence of organic solvents, significant leaching of PCBs in soil can occur (ATSDR 19871).

PCBs with vapor pressures ranging from 10⁻³ to 10⁻⁵ mm Hg should exist almost entirely in the vapor phase in the atmosphere (Eisenreich et al, 1981). The tendency of PCBs to adsorb to particulates increases with increasing degree of chlorination. PCBs in the atmosphere are physically removed by wet and dry deposition (Eisenreich et al, 1981).

In general, the rate of degradation or transformation in the environment decreases with increasing chlorination. In the atmosphere, the vapor phase reaction of PCBs with hydroxyl radicals may be the dominant transformation process (ATSDR 19871). In the aquatic environment PCBs are not significantly degraded by hydrolysis and oxidation, and photolysis appears to be the only potentially important process (ATSDR 19871).

In general, mono-, di-, and trichlorinated biphenyls (Aroclor 1221 and 1232) biodegrade relatively rapidly; tetrachlorinated biphenyls (Aroclors 1016 and 1242) biodegrade slowly; and higher chlorinated biphenyls (Aroclors 1248, 1254 and 1260) are resistant to biodegradation (ATSDR 19871). In addition to the degree of chlorination, chlorine substitution patterns also appear to be important in influencing the rate of biodegradation.

Experimentally determined bioconcentration factors (BCFs) for various Aroclors (1016, 1248, 1254, and 1260) in aquatic species (fish, shrimp, oyster) range from 26,000 to 660,000 (Leifer et al, 1983).

#### Noncarcingenic Effects

Several complications exist in assessing the toxicity of PCBs. Different mixtures nominally depicted by PCB type and chlorine sub-

stitution may, in fact, vary significantly in isomer composition. Additionally, highly toxic contaminants are often present in PCB mixtures.

In general, however, it can be concluded that short and intermediate-term studies of toxicological effects following oral administration of PCBs to animals result in a variety of physiological and morphological alterations in the liver, including: enlargement, fatty infiltration, centrilobular lesions, and effects on liver porphyrin metabolism. The major biochemical effects include induction of mixed function oxidase enzymes and modification of porphyrin metabolism. PCBs can also inhibit the immune system. Skin applications to rabbits has been shown to cause erythema, keratosis, and chloracne.

Human studies related to PCB exposures have been done on the health of occupationally exposed workers, as well as on health effects noted following two incidents in which cooking oils contaminated with PCBs were ingested. Occupationally exposed workers typically demonstrated dermal problems such as chloracne, rashes, and burning sensations. While most biochemical parameters in these studies were found to be within normal ranges, one study reported an elevation of liver enzymes in exposed workers.

The two incidents, or outbreaks, concerning the ingestion of PCB-tainted cooking oils occurred in east Asia. The first incident, designated as the "Yusho" outbreak, occurred among Japanese (Higachi, 1976; Kurotsone and Shapiro, 1984); while the second, designated "Taichung", occurred among Taivanese (Hsu et al, 1984; Lu and Wang, 1984). Health effects observed in humans following exposure included: chloracne, increased discharge from the eyes, soreness and weakness of limbs, headaches, dizziness, and general malaise. Because the cooking oil in the Yusho study was also found to be contaminated with highly toxic polychlorinated dibenzofurans, implications cannot be limited to PCBs alone in this study.

#### Reproduction and Development

The range of reported effects on reproduction in animals include: a lengthening of the estrus cycle, weak estrogenic activity, fetotoxicity, fetal deaths, decreased survival of the neonate, small birth weight, and

a variety of teratogenic effects. Rats and mice appear to be more resistant to reproductive toxicity than mink or monkeys, which have also been used in studies. These differences may possibly be attributable to the duration of the studies and to differences in metabolic rates and pharmacokinetics.

Maternal toxicity obviously is an important consideration when assessing reproductive and developmental toxicity. This consideration, frequently referred to as Karnofsky's rule, states that "any compound administered at the proper dosage, at the proper stage of development, or to embryos of the proper species will be effective in causing disturbances in embryonic development". This calls attention to the fact that if a pregnant animal is sick, the delicate balance between the mother and fetus is affected or disrupted, and adverse fetal effects can be expected.

There have been studies of the reproductive and developmental effects of combined exposure to PCBs subsequent to outbreaks of poisoning in Japan (Yusho) and Taiwan (Taichung). Findings in newborn children of exposed mothers include: fetal growth inhibition, low birth weight, dry brown skin pigmentation, precocious dentition, gingival hyperplasia, and abnormal calcification of the skull (DHHS 1985a).

#### Carcinogenicity and Mutagenicity

There have been a number of studies designed to assess carcinogenicity in animals. All but one study have been negative. The positive study by Kimbrough et al. (1975) reported a statistically significant increase in hepatocellular carcinomas among mice and rats administered Aroclor 1260 in the diet.

Epidemiological studies have not reported significant increases in cancer in occupationally exposed workers. Explanations for these findings may include an insufficient latency period and small sample sizes in the studies.

Based upon the above evidence, EPA has classified PCBs in Group B₂, with adequate evidence of carcinogenesis in animals, and inadequate evidence in humans (EPA 1985). IARC (1978) has classified PCBs in category 2B, based on studies indicating inadequate evidence for carcinogenicity

in humans, sufficient evidence in animals, and inadequate evidence of activity in short-term mutagenicity tests.

EPA's cancer assessment group has calculated a unit cancer risk of  $4.34 \, (mg/kg/day)^{-1}$ , using the upper 95 percent value of the doses used in the positive study (Kimbrough et al 1975).

## Standards and Criteria

## Drinking Water

As the first stage in developing a maximum contaminant level (MCL) for PCBs in drinking water, the EPA has recently proposed an MCLG of zero. EPA will establish an MCL taking into account technological feasibility of control and analytical feasibility (EPA 1988).

# Surface Water

The EPA has established ambient water quality criteria for the protection of freshwater and saltwater aquatic life of 0.014 ug/l and 0.03 ug/l, respectively. For human health, EPA has estimated the drinking water concentration corresponding to one-in-a-million cancer excess of 0.0079 ng/l.

POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)

#### Environmental Chemistry and Fate

In general, most priority pollutant PAHs can be characterized as having low vapor pressure, low water solubility, low Henry's Law Constants, high logarithms of the octanol-water partition coefficients (log  $K_{OU}$ s) and high organic carbon partition coefficients ( $K_{OC}$ s). The high  $K_{OC}$ s indicate that most PAHs are strongly sorbed to organic matter in the soils. This factor, combined with the low water solubilities, indicate that the rate of transport of most PAHs from the unsaturated zone via infiltration to the saturated zone will be extremely low. Low vapor pressure and low Henry's Law Constants indicate that most PAHs will not readily volatilize from surface water, and these factors, in combination with high  $K_{OC}$ s, also indicate low volatilization rates from surface soils.

The exceptions to the groundwater transport argument are four PAHs (acenaphthene, fluorene, fluoranthene, and pyrene) with water solubilities greater than 100 ug/L. Although these four compounds have high  $K_{\rm oc}s$  (10 3  or greater) relative to other PAHs, their solubilities indicate that they are mobile, and may be observed in groundwater. The chemical and physical properties for the 14 priority pollutant PAHs are presented in Table 1.

Typically, although PAHs are regarded as persistent in the environment, they are degradable by soil microorganisms.

Degradation rates and degree of degradation are influenced by environmental factors, microbial flora and physicochemical properties of the PAHs themselves. Important environmental factors include temperature, pH, oxygen status, soil type, moisture, and nutrient status (Sims and Overcash 1983). Microbial factors include acclimation status, populations present, and the relative proportions of bacteria, fungi, and actinomycetes (Sims and Overcash, 1983). Physico-chemical properties include chemical structure, concentration, and lipophilicity.

Compounds which are easily and rapidly biodegraded include acenaphthene, naphthalene, and phenanthrene. Compounds which are persistent, requiring long time periods or specialized conditions for degradation, include benzo(k)fluoranthene, benzo(g,h,i)perylene, benzo(a)pyrene,

Table 2

PHYSICAL AND CHEMICAL PROPERTIES OF SELECTED PAHs*

Chemical Name	Molecular Weight (g)	CAS No.	Vapor Pressure (mm Hg)	Water Solubility (mg/L)	Henry's Law Constant	log Kow	Koc (mL/g)	BCF (L/kg)
acenaphthene	154	83-32-9	1.55 x 10 ⁻³	3.42	9.2 x 10 ⁻⁵	4.0	4.6 x 10 ³	242**
anthracine	176	120-12-7	1.95 x 10 ⁻⁴	4.5 x 10 ⁻²	1.2 x 10 ⁻³		1.4 x 10 ⁴	1,210**
benzo(a)anthracene	228	56-55-3	2.2 x 10 ⁻⁸	$5.7 \times 10^{-3}$	1.16 x 10 ⁻⁶	5.6	1.38 x 10 ⁶	11,700**
benzo(b)fluoranthene	252	205-99-2	5.0 x 10 ⁻⁷	$1.4 \times 10^{-2}$	1.19 x 10 ⁻³	6.06	5.5 x 10 ⁵	
benzo(k)fluoranthene	252	207-08-9	5.1 x 10 ⁻⁷	$4.3 \times 10^{-3}$	3.94 x 10 ⁻³	6.06	5.5 x 10 ⁵	
benzo(g,h,i)perylene	276	191-24-2	1.03 x 10 ⁻¹⁰	7.0 x 10 ⁻⁴	5.34 x 10 ⁻⁸	6.51	1.6 x 10 ⁶	68,200**
benzo(a)pyrene	252	50-32-8	5.6 x 10 ⁻⁹	1.2 x 10 ⁻³	1.55 x 10 ⁻⁶	6.06	5.5 x 10 ⁶	28,200**
chrysene	228	208-01-9	$6.3 \times 10^{-4}$	1.8 x 10 ⁻³	1.05 x 10 ⁻⁶	5.61	2.0 x 10 ⁵	11,700**
dibenzo(a,h)anthracene	278	53-70-3	1.0 x 10 ⁻¹⁰	5.0 x 10 ⁻⁴	7.33 x 10 ⁻⁸	6.8	33 x 10 ⁶	
fluoranthene	202	206-44-0	5.0 x 10 ⁻⁶	2.6 x 10 ⁻¹	6.46 x 10 ⁻⁶	4.9	3.8 x 10 ⁴	2,920
fluorene	116	86-73-7	$7.1 \times 10^{-4}$	1.69	6.42 x 10 ⁻⁵	4.2	7.3 x 10 ³	1,300***
indeno(1,2,3-cd)perylene	276	193-39-5	1.0 x 10 ⁻¹⁰	$5.3 \times 10^{-4}$	6.86 x 10 ⁻⁸	6.5	1.6 x 10 ⁶	
phenanthrene	178	85-01-3	6.8 x 10 ⁻⁴	1.0	1.59 x 10 ⁻⁴	4.46	1.44 x 10 ⁴	2,630**
pyrene	202	129-00-3	2.5 x 10 ⁻⁶	1.32 x 10 ⁻³	$5.4 \times 10^{-6}$	4.88	3.8 x 104	2,800**

^{*} Unless otherwise footnoted, data taken from EPA (1986a).

^{**} EPA (1984i)

^{***} Lyman, Reihl, and Rosenblatt (1982).

chrysene, dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene. The ease of biodegradation generally decreases with increasing molecular weight. Biodegradation products generally include hydroxylated PAH derivatives.

#### Noncarcinogenic Effects

Very little attention has been paid to the noncarcinogenic effects of PAHs. It is known, however, that rapidly proliferating tissues (e.g., bone marrow, lymphoid organs, testes, etc.) appear to be the preferred targets for PAH-induced cytotoxicity.

Acute and chronic exposure to various PAHs classified as carcinogens has resulted in the destruction of specific hematopoietic and lymphoid elements, ovotoxicity, anti-spermagenic effects, adrenal necrosis, and changes in the intestinal and respiratory epithelia. This tissue damage occurs at doses expected to induce carcinogens and malignancy risks predominant in evaluating PAH toxicity. For PAHs classified as noncarcinogenic, very little is known about toxic responses or mechanisms.

# Carcinogenicity and Mutagenicity

The EPA has issued finalized carcinogenicity risk assessment guidelines (EPA, 1986b) to establish criteria for evaluating and categorizing chemicals into five groups, according to weight-of-evidence categories. According to this categorization scheme, five of the 15 priority pollutant PAHs have been placed in category B₂ (probable human carcinogens) with sufficient evidence of carcinogenicity in animals, and inadequate data for humans. A sixth PAH (indeno (1,2,3-cd) perylene) has been placed in category C, denoting possible human carcinogenicity based on limited evidence of carcinogenicity in animals in the absence of human data (EPA, 1986b). Table 2 contains EPA's most current categorization of priority pollutant PAHs (EPA, 1986b). Following its risk assessment guidelines, EPA typically performs quantitative risk assessments for groups B or A, and, in some cases (depending on the quality of the data), for group C.

To date, EPA has estimated a carcinogenicity slope (unit cancer risk) for carcinogenic PAHs using data for a single PAH, benzo(a)pyrene (BaP). This limited effort does not take into account the clearly docu-

Table 2

EPA CARCINOGENICITY CATEGORIZATION FOR ORAL AND INHALATION

ROUTES OF EXPOSURE FOR THE 15 PRIORITY POLLUTANTS POLYCYCLIC AROMATIC HYDROCARBONS

	EPA Carcinogenicity Classifications*		
Compound	Inhalation	Orel	
acenaphthene	D	۵	
anthracene	D	D	
bengo(a)anthracene	B ₂	B ₂	
benso(b)fluoranthene	B 2	B 2	
benso(k)fluoranthene	ً و	" م	
benso(g,h,i)perylene	D	D	
benso(a)pyrene	B ₂	B ₂	
chrysene	8 ₂	B ₂	
dibenzo(a,h)anthracene	B ₂	B 2	
fluoranthene	D	D	
fluorene	D	D	
indeno(1,2,3-cd)perylene	c	c	
naphthalene	D	D	
phenanthrene	D	D	
pyrene	D	D	

^{*} Unless otherwise footnoted, classification taken from EPA (1986a).

mented differences in quantitative dose-response relationships for the other PAHs. Two specialists in EPA's carcinogenic assessment group have evaluated the relative potency estimates for the other five carcinogenic PAHs to benzo(a)pyrene (Thorslund et al, 1986).

Using a series of sophisticated statistical procedures, these authors have derived estimated relative potencies for the five other "carcinogenic" PAHs relative to BaP. For the potency estimation, the authors used bioassays from individual laboratories in which BaP and the other PAHs were tested in common. The results of this procedure for developing relative potency estimates are summarized in Table 3.

RELATIVE POTENCY ESTIMATES DERIVED FOR POLYCYCLIC AROMATIC HYDROCARBONS

CATEGORIZED IN GROUP A, B, OR C ACCORDING TO EPA'S WEIGHT OF EVIDENCE CRITERIA

Table 3

Compound	Relative Potency Estimates		
benzo(a)pyrene	1		
benzo(a)anthracene	0.145		
benzo(b)fluoranthene	0.140		
chrysene	0.0044		
dibenzo(a,h)anthracene	2.82		
indeno(1,2,3-cd)perylene	0.232		

Source: Thorslund et. al. (1986)

#### TETRACHLOROETHENE (PERCHOLOROETHYLENE OR PERC)

#### Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of tetrachloroethene (CAS No. 127-18-4) are summarized below (EPA 1986a).

Molecular Weight (g/mole)	166
Water Solubility (mg/L at 25°C)	150
Vapor Pressure (mmHg at 25°C)	17.8
Henry's Law Constant (atm-m³/mole)	$2.6 \times 10^{-2}$
Log Kow	2.6
K _{oc}	364
BCF	31

Tetrachloroethene's moderate water solubility and vapor pressure indicate that volatilization is the major loss mechanism from surface soil and surface water. Its moderate  $K_{\rm oc}$  indicates that leaching to groundwater from lower soil depths is an important mechanism. In addition, tetrachloroethene is biodegraded by certain soil microorganisms by a sequential series of monodechlorinations. Once it reaches the groundwater, its moderate  $K_{\rm oc}$  indicates that tetrachloroethene will be moderately absorbed to soil particles and will be moderately retarded relative to groundwater transport. Finally, tetrachloroethene is subject to low bioconcentration in aquatic species.

#### Noncarcinogenic Effects

The principal toxic effects following acute exposure in animals to tetrachloroethene (PERC) are depression of the CNS, ataxia (failure of muscular coordination), and respiratory cardiac arrest (ATSDR 1987m, EPA 1985f). Subchronic and chronic effects in animals include damage to the

liver and kidneys. In humans, the principal effects are CNS depression and liver toxicity.

#### Carcinogenicity and Mutagenicity

A 1977 NCI bioassay in which PERC was administered by gavage reported increased incidence of liver tumors in mice but not rats (EPA 1985d). A draft report of a NTP inhalation bioassay, currently under internal review, has noted an increased incidence of tumors in mice and rats. Although EPA has previously categorized tetrachloroethylene in Group B₂--probable human carcinogen (EPA 1985b, 1985h)--the Agency is awaiting final results of the NTP bioassay before commencing a rule-making for the chemical in drinking water.

PERC has been evaluated for its ability to cause gene mutation, chromosomal aberrations, unscheduled DNA synthesis, and mitotic recombination. In general, these responses have been weak and were observed at high concentrations that were cytotoxic (EPA 1985h). Additionally, no dose-dependent relationships were demonstrated in these studies (EPA 1985h).

#### Drinking Water Standards

EPA has not established an MCL for PERC in drinking water. The agency is scheduled to begin rule-making procedures to establish an MCL in the near future.

#### TOLUENE

#### Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of toluene (CAS No. 108-88-3) are summarized below (EPA 1986a).

Molecular Weight (g/mole)	92
Water Solubility (mg/L at 25°C)	535
Vapor Pressure (mmHg at 25°C)	28.1
Henry's Law Constant (atm-m³/mole)	$6.4 \times 10^{-3}$
Log Kow	2.73
K _{oc}	300
BCF	10.7

Toluene has a high water solubility, moderate vapor pressure, high Henry's Law Constant, and moderate  $K_{\rm oc}$ . Based on the vapor pressure and  $K_{\rm oc}$ , volatilization from surface soils is an important transport pathway. Based on the water solubility and moderate  $K_{\rm oc}$ , toluene will be readily transported to groundwater, and upon reaching groundwater, be subject to a low degree of retardation relative to the groundwater flow. Based on the water solubility and high Henry's Law Constant, volatilization will be a major transport pathway from surface water.

# Noncarcinogenic Effects

Acute or chronic exposure to high levels of toluene in animals results in CNS depression and effects on the lungs, liver, and kidney.

EPA has derived an AADI for drinking water consumption based upon a 24-month inhalation study in rats (EPA 1985c). Based upon a NOAEL of  $1,130~\text{mg/m}^3$ , an uncertainty factor of 100, and assuming 50 percent pulmonary absorption, EPA derived an AADI of 10,100 ug/L (EPA 1985c).

#### Carcinogenicity and Mutagenicity

Only one long-term carcinogenicity bioassay of toluene has been reported. This study concluded that toluene was not carcinogenic following inhalation in rats. NTP is conducting carcinogenicity studies in which toluene is being administered by inhalation and gavage to rats and mice. In addition, carcinogenicity studies by European investigators are expected to be published in the next few years. According to weight-of-evidence carcinogenicity criteria, EPA has classified toluene in Category D, not classifiable as to human carcinogenicity (EPA 1985c).

Toluene has not been shown to be mutagenic in in vivo or in vitro assays (EPA 1985c).

#### Drinking Water Standards and Criteria

Standards. In the first stage of the rule-making process designed to establish a MCL for toluene in drinking water, EPA has issued a proposed MCLG of 2,600 ug/L derived from the AADI of 10,100 ug/L by allocating a 20 percent of drinking water contribution to total intake from all sources of exposure (EPA 1985c). Subsequent to finalization of the MCLG, EPA will evaluate analytical feasibility and feasibility of control in establishing an enforceable MCL.

Criteria. In the absence of adequate dose-response data for oral exposure to toluene, EPA derived a 1-day HA, based on NOAEL of 377 mg/m³ reported in studies of humans, the subjects of single inhalation exposures of up to 8 hours. Based upon the NOAEL, an uncertainty factor of 100, and a variety of physiological parameters and intake assumptions, EPA derived 1-day HAs of 18,000 ug/L and 63,000 ug/L for a 10-kg child and 70-kg adult, respectively (EPA 1985d).

In the absence of sufficient data, EPA derived 10-day HAs of 6,000 ug/L (child) and 21,000 ug/L (adult), by applying an uncertainty factor of 3 to the 1-day HA. The Agency utilized a three-fold rather than the usual 10-fold uncertainty factor because toluene is rapidly distributed and excreted, and because the chemical presents little bioaccumulation potential relative to typical toxicants (EPA 1985d).

The EPA ambient water quality criterion for the protection of human health is 14,300 ug/L (EPA 1980a).

#### 1,1,1-TRICHLOROETHANE (TCA)

#### Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of 1,1,1-trichloroethane (CAS No. 71-55-6) are summarized below. (EPA 1986a).

Molecular Weight (g/mole)	133
Water Solubility (mg/L at 25°C)	1,500
Vapor Pressure (mmHg at 25°C)	123
Henry's Law Constant (atm-m³/mole)	$1.4 \times 10^{-2}$
Log Kow	2.5
K _{oc}	152
BCF	5.6

1,1,1-trichloroethane (TCA) can be characterized as having a high vater solubility, a high vapor pressure, a high Henry's Law Constant, and a moderate  $K_{\rm oc}$ . The high vapor pressure and moderate  $K_{\rm oc}$  indicate that volatilization will be a major transport pathway in surfical soil. In subsurface soils, the high water solubility and moderate  $K_{\rm oc}$  indicate that transport to groundwater represents a major pathway, and once the water table is reached, chemical transport will be moderately retarded relative to the groundwater flow. The high vapor pressure, high Henry's Law Constant, and high water solubility indicate that volatilization from surface water will be a major transport pathway.

#### Noncarcinogenic Effects

The principal noncarcinogenic effects of 1,1,1-trichloroethane (TCA) following exposure in animals and man are depression of the CNS, increase in liver weight, and cardiovascular changes. Current data do not suggest that TCA is a reproductive or developmental toxin.

EPA has developed a risk reference dose (RRfD) of 0.35 mg/kg/day based upon a NOAEL of 1,365 mg/m³ reported in a study in which mice were exposed by inhalation for 14 weeks. EPA derived the RRfD by application of an uncertainty factor of 100, a 30% absorbed dose, and standard physiological parameters (EPA 1985g).

#### Carcinogenicity and Mutagenicity

There have been two TCA carcinogenicity bioassays. The first, conducted by NCI, was judged to be inadequate due to poor survival in treated animals. Preliminary results of the second, by NTP, showed elevated incidences of hepatocellular carcinomas. These initial results have been questioned and the study is currently being audited (EPA 1985b). Based upon these results, EPA has classified TCA according to weight-of-evidence criteria in Group D, not classifiable--inadequate human and animal evidence of carcinogenicity (EPA 1987a).

#### Drinking Water Standards and Criteria

Standards. EPA has established a drinking water MCL for TCA of 200 ug/L.

Criteria. EPA has developed a 1-day HA based upon a LOEL of 1.4 g/kg/day reported in a study of rats receiving a single oral dose of TCA. Based upon the LOEL, and standard weight and intake assumptions, EPA derived a 1-day HA of 14,000 ug/L for a 10-kg child (EPA 1984d). In the absence of sufficient data, EPA has not developed a 10-day HA. EPA has developed longer-term HAs of 35,000 ug/L (child) and 125,000 ug/L (adult), based upon a NOAEL of 0.5 g/kg/day reported in a study in rats receiving TCA by gavage for 12 weeks (EPA 1985d).

The EPA lifetime HA of 200 ug/L is equivalent to and was derived by the same methodology as the RMCL (EPA 1985d).

The EPA ambient water quality criterion for TCA for the protection of human health is 18,700 ug/L (EPA 1980a).

#### TRICHLOROETHENE (TCE)

#### Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of trichloroethene (TCE) (CAS No. 79-01-6) are summarized below (EPA 1986a).

Molecular Weight (g/mole)	131
Water Solubility (mg/L at 25°C)	1,100
Vapor Pressure (mmHg at 25°C)	57.9
Henry's Law Constant (atm-m ³ /mole)	$9.1 \times 10^{-3}$
Log Kow	2.38
K _{oc}	126
BCF	10.6

The high water solubility and high vapor pressure of TCE indicate that volatilization will be the predominant loss mechanism from surficial soils. In soils and groundwater, trichloroethene is degraded to cis and trans 1,2-dichloroethylene, vinylidene chloride, and vinyl chloride (ATSDR 1987n). TCEs moderate organic-carbon partition coefficient indicates it is moderately adsorbed to soils, and will leach to groundwater. In light of its moderate Henry's Law Constant, volatilization will be the major fate process for TCE from surface water.

Trichloroethene is only moderately bioconcentrated in aquatic life.

#### Noncarcinogenic Effects

The principal toxicological effect of concern for trichloroethene (TCE) is carcinogenicity. Noncarcinogenic effects include CNS disturbances and kidney and liver damage following exposure to relatively high airborne concentrations (ATSDR 1987n).

# Carcinogenicity and Mutagenicity

Six studies of the carcinogenicity of TCE in animals have been published. Two have reported significant increases in liver tumors in mice. EPA has judged three others as technically flawed. A sixth reported that TCE, containing epichlorohydrin and epoxybutane, was carcinogenic in a less responsive mouse strain, but pure TCE was not (EPA 1985b). Recognizing the lower responsiveness of the mice in the latter study, EPA has classified TCE based upon weight-of-evidence carcinogenicity guidelines in Category B2--probable human carcinogen (EPA 1987a).

Commercial TCE containing stabilizers has been reported to be weakly mutagenic in a variety of in vitro and in vivo assays representing a wide evolutionary range of organisms (EPA 1985g). Based on these data, EPA has concluded that commercial TCE may have the potential to cause weak or borderline increases above the spontaneous level of mutagenic effects in exposed human tissues (EPA 1985g).

# Drinking Water Standards

EPA has established a drinking water MCL for TCE of 5 ug/l (EPA 1987a).

2,4,6-TRICHLOROPHENOL (TCP)

# Environmental Chemistry and Fate

The relevant physical and chemical properties and environmental fate of 2,4,6-trichlorophenol (CAS No. 88-06-2) are summarized below (EPA 1986a).

Molecular Weight (g/mole)	197
Water Solubility (mg/L at 25°C)	800
Vapor Pressure (mmHg at 25°C)	$1.2 \times 10^{-2}$
Henry's Law Constant (atm-m³/mole)	$3.9 \times 10^{-6}$
Log K _{ow}	3.87
K _{oc}	2000
BCF	150

Based upon its high  $K_{\rm OC}$  and low vapor pressure, volatilization is not an important fate mechanism for TCP from surface soil. Reportedly, TCP is subject to some degradation. In light of the low vapor pressure and high  $K_{\rm OC}$ , degradation may be an important fate mechanism in soils. The high  $K_{\rm OC}$  indicates that TCP is only slowly leached and transported to groundwater. Should it reach groundwater, TCP will be strongly absorbed to soil organic carbon, and will be strongly retarded relative to groundwater flow.

In surface water, sorption to sediment appears to be the most important fate mechanism. In addition, based on its BCF, TCP is subject to moderate bioconcentration in aquatic life.

#### Noncarcinogenic Effects

In preliminary subchronic feeding studies, single strains of mice and rats received TCP ad libitum in the diet for seven weeks. Observations extended one week following cessation of the diet. A significant reduction in growth rate was observed in rats receiving 10,000

ug/g and mice receiving 14,700 ug/g. Assuming that rats weighed 0.4 kg and consumed 0.02 kg/day, NAS estimated a minimum toxic dose of 500 mg/kg/day (NAS 1982).

# Carcinogenicity and Mutagenicity

Technical grade TCP was administered in the diet to male and female F344 rats and male  $B_6C_3F_1$  mice at concentrations of 5,000 ug/g and 10,000 ug/g, respectively, for 105 to 107 weeks (NCI 1979 as cited in NAS 1982). Female  $B_6C_3F_1$  mice received TCP at 10,000 ug/g to 20,000 ug/g, but at 38 weeks, the doses were reduced by a factor of 4 because of reduced weight gain. Under the conditions of the experiment, TCP was reported to be carcinogenic in male F344 rats (lymphomas or leukemias) and  $B_6C_3F_1$  mice (hepatocellular carcinomas or adenomas) (NAS 1982). Polychlorinated dibenzofurans and dioxins may be formed during the chemical synthesis of TCP. The dioxin content of the technical grade TCP used in these studies was not reported.

Based upon the positive animal studies, EPA has categorized TCP as a  $B_2$ , probable human carcinogen (EPA 1986a).

TCP was not reported as mutagenic in the Ames assay with or without activation by hepatic microsomes (EPA 1984c). TCP did increase the mutation rate but not the intragenic recombination in <u>S. cervisiac</u> (EPA 1984c).

#### Drinking Water Standards and Criteria

EPA has not developed drinking water standards or health advisories for TCP. EPA has established ambient water quality criteria (AVQC), based upon TCPs carcinogenicity in animals, for the protection of human health. The AVQC criteria are 1.2 ug/L for water and fish consumption, and 3.6 ug/L for fish consumption only. These criteria are equivalent to the estimated incremental increased 1 x  $10^{-6}$  lifetime cancer risk, based upon the animal carcinogenicity study results (EPA 1986g).

# DO NOT

# REMOVE

THIS

PAGE!